|本期目录/Table of Contents|

[1]苏 杨,余 萱,卢 翔,等.基于BP神经网络PID机房温度控制研究[J].工业仪表与自动化装置,2022,(02):102-106.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.021]
 SU Yang,YU Xuan,LU xiang,et al.Research on temperature control of PID computer room based on BP neural network[J].Industrial Instrumentation & Automation,2022,(02):102-106.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.021]
点击复制

基于BP神经网络PID机房温度控制研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2022年02期
页码:
102-106
栏目:
出版日期:
2022-04-15

文章信息/Info

Title:
Research on temperature control of PID computer room based on BP neural network
文章编号:
1000-0682(2022)02-0000-00
作者:
苏 杨1余 萱1卢 翔1田紫锋2
(1.贵州电网有限责任公司信息中心,贵州 贵阳 550001;2.贵州大学机械工程学院,贵州 贵阳 550025)
Author(s):
SU Yang1YU Xuan1LU xiang1TIAN Zifeng2
(1.Information Center of Guizhou Power Grid Co., Ltd., Guizhou Guiyang 550001,China;2.School of Mechanical Engineering, Guizhou University,Guizhou Guiyang 550025 ,China)
关键词:
BP神经网络信息机房数学模型Simulink
Keywords:
BP neural network information room mathematical model Simulink
分类号:
TN02TP273+.2
DOI:
10.19950/j.cnki.cn61-1121/th.2022.02.021
文献标志码:
A
摘要:
基于一种适用于数据中心信息机房温度调节的通风地板,利用计算流体力学搭建了房间系统数学模型,设计BP神经网络控制规则对传统的PID控制进行优化从而提升控制效果。利用Matlab中S函数的编写对控制器进行设计,并用Simulink搭建传统PID与BP神经网络PID的温度控制系统。仿真结果表示添加了BP神经网络算法的PID控制器效果稳定性提升了40%,超调量变小且无静差。将控制方法应用到机房温度分布不均匀的实际工程中,结果显示所提方法能够保证机房温度均匀分布,节能效率显著提升。
Abstract:
Based on a ventilated floor suitable for data center information room temperature regulation,a mathematical model of the room system is constructed using computational fluid dynamics,and BP neural network control rules are designed to optimize the traditional PID control so as to improve the control effect.The controller is designed by using the S-function writing in Matlab,and the temperature control system of conventional PID and BP neural network PID is built by Simulink.The simulation results indicate that the PID controller effect with the addition of BP neural network algorithm is 40% more stable,with smaller overshoot and no static difference.The control method is applied to the actual project of uneven temperature distribution in the server room, and the results show that the proposed method can ensure the uniform temperature distribution in the server room.

参考文献/References:

[1]程杰,尚智婕,胡威,等.智能电网信息系统安全隐患及应对策略[J]. 电气应用,2020,39(04):106-109.

[2]王嵘冰,徐红艳,李波,等.BP神经网络隐含层节点数确定方法研究[J].计算机技术与发展,2018,028(004):31-35.
[3]闫浩安,李建冬.基于改进神经网络PID的永磁同步电机控制研究[J].现代防御技术,2021,49(04):6.
[4]吴亚奇.数据中心机房节能方法研究[D].江苏:苏州科技大学,2019.
[5]王斌,高岩,李瑞.集中空调系统变水温和变风量节能优化控制[J].现代电子技术,2019,42(05):4.
[6]田胜元,戚永东.房间传热数学模型的建立与传递函数求解法的研究[J].重庆建筑大学学报,1986(02):25-37.
[7]石书培,褚建新,周贤文.基于神经网络补偿的温湿度试验箱模糊解耦控制[J].工业仪表与自动化装置,2018,263(05):69-72+86.
[8]张国翊,胡铮.改进BP神经网络模型及其稳定性分析[J].中南大学学报,2011,42(01):115-124.
[9]陈运军.基于STM32的环境监测系统设计[J].电子设计工程,2019,27(02):160-165.
[10]赵永柱,张忠浩,陈果,等.基于计算流体动力学模型的机房温度及空调节能仿真[J].计算机应用,2020,40(S01):5.
[11]卢旭锦,谢伟彬.基于PLC的槟榔自动切割机电气控制线路的开发[J].机械与电子,2018,36(07):39-42.
[12]郭琪,王琦,刘骁元,等.基于单片机的温室自动控制系统设计[J].工业仪表与自动化装置,2019(04):63-65+69.
[13]王美玲,王念平,李晓.BP神经网络算法的改进及应用[J].计算机工程与应用,2009,45(35):47-48.[14]崔东文.多隐层BP神经网络模型在径流预测中的应用[J].水文,2013,33(01):68-73.
[15]刘柱,卢剑锋,王一达,等.微压富氧舱系统建模及控制算法研究[J].机械设计与制造,2020(12):5.

相似文献/References:

[1]刘 千,王 堃.基于BP神经网络的防空目标识别方法[J].工业仪表与自动化装置,2015,(02):94.
 LIU Qian,WANG Kun.The research of the air defense target recognition based on BP neural network[J].Industrial Instrumentation & Automation,2015,(02):94.
[2]李春华,徐少雄.基于PSO的RBF神经网络的变频调速系统的研究[J].工业仪表与自动化装置,2015,(03):3.
 LI Chuanhua XU Shaoxiong.The research of variable frequency speed control system based on PSO-RBFneural network[J].Industrial Instrumentation & Automation,2015,(02):3.
[3]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(02):94.
[4]李珊珊,李一民,郭真真.基于神经网络的分阶车牌字符识别算法研究[J].工业仪表与自动化装置,2016,(02):7.
 LI Shanshan,LI Yimin,GUO Zhenzhen.Research on a phased license plate character recognition algorithm based on neural network[J].Industrial Instrumentation & Automation,2016,(02):7.
[5]汤会增,韩 湘,毛建坤,等.基于BP网络的GIS局部放电声电联合检测故障定位方法[J].工业仪表与自动化装置,2016,(04):57.
 TANG Huizeng,HAN Xiang,MAO Jiankun,et al.The fault location method of acoustic electric joint partial discharge detection based on BP network in GIS[J].Industrial Instrumentation & Automation,2016,(02):57.
[6]王 权,李 军,戴 立.基于BP神经网络的电动伺服加载算法研究[J].工业仪表与自动化装置,2017,(02):8.
 WANG Quan,LI Jun,DAI Li.Research on electric loading simulator algorithms based on BP neural network[J].Industrial Instrumentation & Automation,2017,(02):8.
[7]梁书立,冯渭春.空间机械手末端位姿修正模型构建方法[J].工业仪表与自动化装置,2017,(03):3.
 LIANG Shuli,FENG Weichun.Method of building correction model of end position and posture on space manipulator[J].Industrial Instrumentation & Automation,2017,(02):3.
[8]王江荣,白保琦.基于GA-BP算法的混凝土抗压强度指标筛选[J].工业仪表与自动化装置,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
 WANG Jiangrong,BAI Baoqi.Selection of concrete compressive strength index based on GA-BP algorithm[J].Industrial Instrumentation & Automation,2017,(02):10.[doi:1000-0682(2017)06-0010-05]
[9]万 磊,唐文政,李岳明.智能水下机器人BP神经网络S面控制[J].工业仪表与自动化装置,2019,(02):13.[doi:1000-0682(2019)02-0000-00]
 WAN Lei,TANG Wenzheng,LI Yueming.BP neural network S plane control for autonomous underwater vehicle[J].Industrial Instrumentation & Automation,2019,(02):13.[doi:1000-0682(2019)02-0000-00]
[10]白建云a,孟新雨b,雷秀军a,等.基于BP神经网络的直接空冷凝汽器出口风温预测[J].工业仪表与自动化装置,2019,(02):63.[doi:1000-0682(2019)02-0000-00]
 BAI Jianyuna,MENG Xinyub,LEI Xiujuna,et al.Prediction of outlet air temperature of direct air condenser based on BP neural network[J].Industrial Instrumentation & Automation,2019,(02):63.[doi:1000-0682(2019)02-0000-00]

备注/Memo

备注/Memo:
收稿日期:2021-11-05

作者简介:
苏杨(1983),男,贵州贵阳人,硕士研究生学历,高级工程师,研究方向为信息化发展,IT运维。
更新日期/Last Update: 1900-01-01