|本期目录/Table of Contents|

[1]张海龙,袁德成.基于多尺度CNN-BiLSTM的轴承故障诊断[J].工业仪表与自动化装置,2022,(03):75-78+84.[doi:10.19950/j.cnki.cn61-1121/th.2022.03.016]
 ZHANG Hailong,YUAN Decheng.Bearing fault diagnosis based on multi-scale CNN-BiLSTM[J].Industrial Instrumentation & Automation,2022,(03):75-78+84.[doi:10.19950/j.cnki.cn61-1121/th.2022.03.016]
点击复制

基于多尺度CNN-BiLSTM的轴承故障诊断

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2022年03期
页码:
75-78+84
栏目:
出版日期:
2022-06-15

文章信息/Info

Title:
Bearing fault diagnosis based on multi-scale CNN-BiLSTM
文章编号:
1000-0682(2022)03-0000-00
作者:
张海龙袁德成
沈阳化工大学 信息工程学院, 辽宁 沈阳 110142
Author(s):
ZHANG Hailong YUAN Decheng
School of information engineering, Shenyang University of Chemical Technology, Liaoniang Shenyang 110142, China
关键词:
轴承故障诊断多尺度卷积神经网络双向长短时记忆网络
Keywords:
bearing fault diagnosis multi-scale convolutional neural network two-way long and short-term memory network
分类号:
TH165+.3TH133.33
DOI:
10.19950/j.cnki.cn61-1121/th.2022.03.016
文献标志码:
A
摘要:
针对传统故障诊断方法提取特征不丰富、未充分利用时序特征的问题,提出了一种基于多尺度CNN和BiLSTM融合的滚动轴承故障诊断方法。首先设计多尺度CNN模型进行多尺度特征信息的提取;其次设计BiLSTM模型进行提取特征前后之间的内部关系;最后通过全连接层构建了特征信息与故障类型的映射,通过softmax分类器输出故障诊断结果。以准确率为评价指标,该方法在多负载场景下诊断准确率为99.2%,在变负载场景下诊断平均准确率为89.6%。实验结果表明,该方法具有良好的自适应工况的能力。
Abstract:
Aiming at the problem that the traditional fault diagnosis methods are not rich in feature extraction and the time series feature is not fully utilized, a rolling bearing fault diagnosis method based on multi-scale CNN and BiLSTM is proposed. First, design a multi-scale CNN model to extract multi-scale feature information; secondly, design a BiLSTM model to extract the internal relationship between before and after the feature; finally, build a mapping between feature information and fault types through a fully connected layer, and output fault diagnosis through the softmax classifier result. Taking the accuracy as an evaluation index, the method has a diagnostic accuracy rate of 99.2% in a multi-load scenario, and an average diagnostic accuracy rate of 89.6% in a variable load scenario. The experimental results show that this method has a good ability to adapt to working conditions.

参考文献/References:

[1] L?Y, ZHOUI Q, LI Y, et al. A predictive maintenance system for multi-granularity faults based on AdaBelief-BP neural network and fuzzy decision making[J]. Advanced Engineering Informatics, 2021, 49: 101318.

[2] TIAN Y, LIU X. A deep adaptive learning method for rolling bearing fault diagnosis using immunity[J]. Tsinghua Science and Technology, 2019, 24(6): 750-762.
[3] XIAO Y ,FEI D , DING E , et al. Rolling Bearing Fault Diagnosis Using Modified LFDA and EMD With Sensitive Feature Selection[J]. IEEE Access, 2018, 6(99):3715-3730.
[4] 张韦,张永,骈晓琴,等.基于改进EMD样本熵和SVM的风机滚动轴承故障诊断[J].机电工程技术,2021,50(12):38-41+67.
[5] LU C, WANG Z, ZHOU B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J]. Advanced Engineering Informatics, 2017, 32: 139-151.
[6] DING X, HE Q. Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 1926-1935.
[7] LEVENT E . Bearing Fault Detection by One-Dimensional Convolutional Neural Networks[J]. Mathematical Problems in Engineering,2017:1-9.
[8] WEI Z , PENG G , LI C , et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals[J]. Sensors, 2017,17(3):425.[9] CAO L , ZHANG J , WANG J Y , et al. Intelligent fault diagnosis of wind turbine gearbox based on Long short-term memory networks[C]// 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019.
[10] 郑直,张华钦,潘月.基于改进鲸鱼算法优化LSTM的滚动轴承故障诊断[J].振动与冲击,2021,40(07): 274-280.
[11] 侯鑫烨,董增寿,刘鑫,等.基于能量熵和CL-LSTM的故障诊断模型[J].机床与液压,2021,49(16):180-184+203.

相似文献/References:

[1]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(03):111.
[2]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(03):18.
[3]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(03):49.
[4]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(03):94.
[5]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(03):50.
[6]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(03):21.
[7]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(03):15.[doi:1000-0682(2018)02-0000-00]
[8]席 维,白 璘,武奇生.基于经验小波变换和峭度值的滚动轴承故障检测方法[J].工业仪表与自动化装置,2018,(06):26.[doi:1000-0682(2018)06-0000-00]
 XI Wei,BAI Lin,WU Qisheng.A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value[J].Industrial Instrumentation & Automation,2018,(03):26.[doi:1000-0682(2018)06-0000-00]
[9]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(03):31.[doi:1000-0682(2018)06-0000-00]
[10]李小斌,王亚云 陈渭红.电动机轴承温度远程在线监测系统设计[J].工业仪表与自动化装置,2018,(06):62.[doi:1000-0682(2018)06-0000-00]
 LI Xiaobin,WANG Yayun,CHEN Weihong.Design of a remote on-line detection system for motor bearings temperature[J].Industrial Instrumentation & Automation,2018,(03):62.[doi:1000-0682(2018)06-0000-00]
[11]张 伟,张广帅,王连彪.基于CNN-GRU网络的轴承故障检测算法[J].工业仪表与自动化装置,2021,(06):88.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.017]
 ZHANG Wei,ZHANG Guangshuai,WANG Lianbiao.Bearing fault detection algorithm based on CNN-GRU network[J].Industrial Instrumentation & Automation,2021,(03):88.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.017]
[12]李 娜,曹丽明.一种风力发电机轴承故障智能诊断方法[J].工业仪表与自动化装置,2022,(05):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]
 LI Na,CAO Liming.An intelligent diagnosis method for wind turbine bearing fault[J].Industrial Instrumentation & Automation,2022,(03):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]

备注/Memo

备注/Memo:
收稿日期:2021-12-31

基金项目:
国家重点研发计划(2018YFB1700200)

作者简介:
张海龙(1996),男,河北唐山人,硕士研究生,主要从事故障诊断以及预测性维护的研究。

通信作者:
袁德成(1960),男,内蒙古阿拉善人,教授,博士,主要从事复杂模型建模、控制与优化的研究。
更新日期/Last Update: 1900-01-01