|本期目录/Table of Contents|

[1]臧春华,张帅杰,苏宝玉.模型预测控制约束自适应研究[J].工业仪表与自动化装置,2022,(05):116-123.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.021]
 ZANG Chunhua,ZHANG Shuaijie,SU Baoyu.Research on constraint adaptation of model predictive control[J].Industrial Instrumentation & Automation,2022,(05):116-123.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.021]
点击复制

模型预测控制约束自适应研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2022年05期
页码:
116-123
栏目:
出版日期:
2022-10-15

文章信息/Info

Title:
Research on constraint adaptation of model predictive control
文章编号:
1000-0682(2022)05-0000-00
作者:
臧春华1张帅杰1苏宝玉2
1.沈阳化工大学 信息工程学院,辽宁 沈阳 110142;
2.沈阳华控科技发展有限公司,辽宁 沈阳 110100
Author(s):
ZANG Chunhua1 ZHANG Shuaijie1 SU Baoyu2
1.College of Information Engineering,Shenyang University of Chemical Technology,Liaoning Shenyang 110142,China;
2.Shenyang HuaKong Technology Development CO., LTD., Liaoning Shenyang 110100,China
关键词:
模型预测控制约束自适应松弛因子模型误差
Keywords:
model predictive control constraint adaptation relaxation factor model error
分类号:
TP13
DOI:
10.19950/j.cnki.cn61-1121/th.2022.05.021
文献标志码:
A
摘要:
针对目前模型预测控制(Model predictive control, MPC)算法处理约束问题普遍以解决定值约束为主,面对大幅干扰及设定值改变等工况,由于定值约束的局限性,系统动态性能、鲁棒性受到影响,系统被控变量波动较大,且运算速度较低。以单层动态矩阵控制(Dynamic matrix control, DMC)算法为核心,提出一种约束自适应控制策略。简化约束在算法预测时域的计算长度,提升算法执行效率;针对控制变量约束引入松弛因子实现约束动态调整,降低动态规划数值求解时间;利用模型结构及反馈原理补偿模型误差。通过单变量系统仿真验证,结果表明:约束自适应算法可自动计算初始约束及过程约束,并对约束动态调整,相对于固定约束系统具有更好的快速性和鲁棒性。
Abstract:
At present, model predictive control (MPC) algorithm generally focuses on solving the constraint problem. In the face of large disturbance and set value change, due to the limitations of set value constraint, the dynamic performance and robustness of the system are affected, the controlled variables of the system fluctuate greatly and the operation speed is low. Taking the single-layer dynamic matrix control (DMC) algorithm as the core, a constrained adaptive control strategy is proposed. The calculation length of constraints in the prediction time domain of the algorithm is simplified to improve the execution efficiency of the algorithm;The relaxation factor is introduced for the control variable constraints to realize the dynamic adjustment of constraints and reduce the numerical solution time of dynamic programming;The model structure and feedback principle are used to compensate the model error. Through the simulation of multivariable systems, the results show that the constraint adaptive algorithm can automatically calculate the initial constraints and process constraints, and dynamically adjust the constraints. Compared with the fixed constraint system, it has better rapidity and robustness.

参考文献/References:

[1]ZHU B,ZHENG Z,XIA X.Constrained adaptive model- predictive control for a class of discrete-time linear systems with parametric uncertainties[J].IEEE Transactions on Automatic Control,2019,65(5):2223- 2229.

[2]SEBASTIAN Plamowski, RICHARD W Kephart. The model order reduction method as an effective way to implement GPC controller for multidimensional objects[J]. Algorithms,2020,13(8):178.
[3]PIOTR M Marusak. Numerically efficient fuzzy MPC algorithm with advanced generation of prediction: Application to a chemical reactor[J].Algorithms,2020, 13(6):143.
[4]ARMANDO D Assandri,CESAR de Prada,ALMUDENA Rueda,et al.Nonlinear parametric predictive temperature control of a distillation column[J].Control Engineering Practice,2013,21(12):1795–1806.
[5]MORALES Rodelo Keidy,FRANCISCO Mario,ALVAREZ Hernan,et al. Collaborative control applied to BSM1 for wastewater treatment plants[J].Processes,2020,8(11): 1465.
[6]VALARMATHI Ramasamy, RAKESH Kumar Sidharthan, RAMKUMAR Kannan, et al. Optimal tuning of model predictive controller weights using genetic algorithm with interactive decision tree for industrial cement kiln process[J]. Processes,2019,7(12):938.
[7]TIMOTHY Sands. Comparison and Interpretation Methods for Predictive Control of Mechanics[J]. Algorithms, 2019, 12(11), 232.
[8]MESBAH A. Stochastic model predictive control: An overview and perspectives for future research[J]. IEEE Control Systems Magazine, 2016, 36(6): 30-44.
[9]ZHANG X, MARGELLOS K, GOULART P, et al. Stochastic model predictive control using a combination of randomized and robust optimization [C]//52nd IEEE conference on decision and control. IEEE,2013:7740-7745.
[10]DRGONA J , TUOR A , VRABIE D . Learning Constrained Adaptive Differentiable Predictive Control Policies With Guarantees[J].2020.
[11]李奇安,李平.对角CARIMA模型多变量自适应约束广义预测控制[J].控制与决策,2009,24(03): 330-334+341.
[12]DHAR A, BHASIN S. Indirect adaptive mpc for discrete-time lti systems with parametric uncertainties [J].IEEE Transactions on Automatic Control,2021, 66(11): 5498-5505.
[13]LORENZEN M, ALLG?WER F, CANNON M. Adaptive model predictive control with robust constraint satisfaction[J]. IFAC-PapersOnLine, 2017, 50(1): 3313-3318.
[14]FAN D, DI Cairano S. Further results and properties of indirect adaptive model predictive control for linear systems with polytopic uncertainty[C]//2016 American Control Conference (ACC). IEEE, 2016: 2948-2953.
[15]YANG L, LU J, XU Y, et al. Constrained robust model predictive control embedded with a new data-driven technique[J]. IET Control Theory & Applications, 2020, 14(16): 2395-2405.
[16]GHASEMI M S, AFZALIANf A A. Robust tube-based MPC of constrained piecewise affine systems with bounded additive disturbances[J].Nonlinear Analysis: Hybrid Systems, 2017, 26: 86-100.
[17]YANG Y, DING B, XU Z, et al. Tube-based output feedback model predictive control of polytopic uncertain system with bounded disturbances [J]. Journal of the Franklin Institute, 2019, 356(15): 7990-8011.
[18]MANZANO J M, LIMON D, DMDL Pe?, et al. Robust data-based model predictive control for nonlinear constrained systems[J].IFAC-PapersOnLine,2018, 51(20): 505-510.
[19]LU X. Adaptive robust model predictive control[D]. University of Oxford,2021.
[20]PATEL N, CORBETT B, MHASKAR P. Model predictive control using subspace model identification[J]. Computers & Chemical Engineering,2021,149:107276.

相似文献/References:

[1]黄 飞.先进过程控制典型效益分析[J].工业仪表与自动化装置,2016,(02):123.
 HUANG Fei.Economic assessment of advanced process control system[J].Industrial Instrumentation & Automation,2016,(05):123.
[2]陈若珠,何 婷,常 勇.永磁同步电机模型预测控制的现状与发展[J].工业仪表与自动化装置,2017,(03):20.
 CHEN Ruozhu,HE Ting,CHANG Yong.Present situation and prospect of model predictive control application in permanent magnet synchronous motor[J].Industrial Instrumentation & Automation,2017,(05):20.
[3]王婷婷,张 巍,赵 雄,等.智能优化技术在空分装置上的应用[J].工业仪表与自动化装置,2020,(04):70.[doi:1000-0682(2020)04-0000-00]
 WANG Tingting,ZHANG Wei,ZHAO Xiong,et al.Application of intelligent optimization technology in the air separation unit[J].Industrial Instrumentation & Automation,2020,(05):70.[doi:1000-0682(2020)04-0000-00]
[4]李 璐,刘 远,周宇航.永磁同步电机鲁棒模型预测控制技术综述[J].工业仪表与自动化装置,2020,(05):11.[doi:1000-0682(2020)05-0000-00]
 LI Lu,LIU Yuan,ZHOU Yuhang.Review of robust model predictive control technology for permanent magnet synchronous motors[J].Industrial Instrumentation & Automation,2020,(05):11.[doi:1000-0682(2020)05-0000-00]

备注/Memo

备注/Memo:
收稿日期:2022-05-13

作者简介:
臧春华(1963),男,辽宁省丹东市人,教授,硕士研究生导师,研究领域为复杂系统建模与控制,智能测控技术。

通讯作者:
张帅杰(1997),男,山西省大同市人,硕士研究生,研究领域为模型辨识,工业模型预测控制。
更新日期/Last Update: 1900-01-01