|本期目录/Table of Contents|

[1]张新荣,张智尧,常 波,等.智能老人健康监测与定位系统设计[J].工业仪表与自动化装置,2023,(02):13-17+50.[doi:10.19950/j.cnki.cn61-1121/th.2023.02.003]
 ZHANG Xinrong,ZHANG Zhiyao,CHANG Bo,et al.Design of intelligent elderly health monitoring and positioning system[J].Industrial Instrumentation & Automation,2023,(02):13-17+50.[doi:10.19950/j.cnki.cn61-1121/th.2023.02.003]
点击复制

智能老人健康监测与定位系统设计

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年02期
页码:
13-17+50
栏目:
出版日期:
2023-04-15

文章信息/Info

Title:
Design of intelligent elderly health monitoring and positioning system
文章编号:
1000-0682(2023)02-0013-05
作者:
张新荣1 张智尧2 常 波3 徐保国4
1.淮阴工学院 自动化学院,江苏 淮安 223003;
2. 大连工业大学 机械工程与自动化学院,辽宁 大连 116034;
3.淮阴工学院 电子工程学院,江苏 淮安 223003;4.江南大学 物联网工程学院,江苏 无锡 214122
Author(s):
ZHANG Xinrong1 ZHANG Zhiyao2 CHANG Bo3 XU Baoguo4
1.Faculty of Automation, Huaiyin Institute of Techenology, Jiangsu Huaian 223003,China?div>2. College of Mechanical Engineering and Automation, Dalian Polytechnic University, Liaoning Dalian 116034,China?/div>
3.Faculty of Electronic Engineering, Huaiyin Institute of Techenology, Jiangsu Huaian 223003,China 4. School of Internet of Things Engineering, Jiangnan University, Jiangsu Wuxi 214122,China
关键词:
人体健康指标检测智能监测无线通信STM32
Keywords:
human health index detection intelligent monitoring wireless communication STM32
分类号:
TP273
DOI:
10.19950/j.cnki.cn61-1121/th.2023.02.003
文献标志码:
A
摘要:
针对老年人行动不便、自身照顾不周,以及出现健康问题时急需救助的状况,设计一款智能老人身体健康智能监测系统,能够检测老人身体健康多方面的数据,并且实现数据的网络上传。该系统的核心器件选择STM32单片机,心率和体温检测分别采用MAX30100心率血氧传感器和DS18B20测温传感器,ATGM33D和ESP9266模块则分别用于进行定位和实现Wi-Fi功能。上位机选择云服务器进行软件开发。传感器采集到人体健康体征数据及体外数据,通过无线通信模块完成数据的上传,能够在终端查看数据的功能,从而实现对人体健康的智能监测与定位。测试结果表明,该系统稳定性好,数据传输可靠性高,使用灵活,有效保障了老人生活状况的安全性与健康监测的实时性,有较高的实用性和推广价值。
Abstract:
In view of the poor mobility of the elderly, poor self-care, and the urgent need for help when health problems occur, an intelligent monitoring system for the physical health of the intelligent elderly is designed, which can detect various data of the elderly’s physical health and upload the data online. The core device of the system is STM32 single chip microcomputer. MAX30100 heart rate and blood oxygen sensor and DS18B20 temperature sensor are used for heart rate and body temperature detection respectively. ATGM33D and ESP9266 modules are used for positioning and realizing Wi-Fi functions respectively. The upper computer selects ECS for software development. The sensor collects the physical sign data and external data of human health, uploads the data through the wireless communication module, and can view the data at the terminal, thus realizing the intelligent monitoring and positioning of human health. The test results show that the system has good stability, high data transmission reliability and flexible use, which effectively guarantees the safety of the elderly’s living conditions and the real-time health monitoring, and has high practicality and promotion value.

参考文献/References:

[1] 陈艳玫,刘子锋,李贤德,等.2015—2050年中国人口老龄化趋势与老年人口预测[J].中国社会医学杂志,2018,35(05):480-483.

[2] 闫海春.人口老龄化对中国经济增长的影响及对策研究[D].吉林:吉林大学,2019.
[3] HUANG P C, LIN C C, WANG Y H, et al. Development of health care system based on wearable devices[C]//2019 Prognostics and System Health Management Conference (PHM-Paris). IEEE, 2019:249-252.
[4] UDDIN M Z. A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system[J]. Journal of Parallel and Distributed Computing, 2019, 123: 46-53.
[5] ENACHE C D, TUDORACHE S G, ULMEANU C E, et al. Development of a Wearable Device for Monitoring People with Heart Problems[C]//2020 International Conference on e-Health and Bioengineering (EHB). IEEE, 2020: 1-4.
[6] GUK K, HAN G, LIM J, et al. Evolution of wearable devices with real-time disease monitoring for personalized healthcare[J]. Nanomaterials, 2019, 9(6): 813.
[7] JIN Lin,MA Yuping. Design and implementation of intelligent environment monitoring system based on OneNET platform[J]. E3S Web of Conferences,2020,165.
[8] MOONEY K, WHISENANT M S, BECK S L. Symptom care at home: a comprehensive and pragmatic PRO system approach to improve cancer symptom care[J]. Medical care, 2019, 57: S66-S72.
[9] LEE H C, KE K H. Monitoring of large-area Io T sensors using a Lo Ra wireless mesh network system: Design and evaluation[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(9): 2177-2187.
[10] LIU J, YAO W. Intelligent Agriculture System Based on Lo Ra and Qt Technology[C]. The 31th Chinese Control and Decision Conference (2019 CCDC). IEEE, 2019: 4755-4760.
[11] VERMA A R, SINGH Y, GUPTA B. Adaptive filtering method for EMG signal using bounded range artificial bee colony algorithm[J]. Biomedical engineering letters, 2018, 8(2): 231-238.
[12] CHOI H, JEONG J. Despeckling images using a preprocessing filter and discrete wavelet transform-based noise reduction techniques[J]. IEEE Sensors Journal, 2018, 18(8): 3131-3139.
[13] VANDECASTEELE K, DE Cooman T, GU Y, et al. Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment[J]. Sensors, 2017, 17(10): 2338.
[14] MAZUREK P, WAGNER J, MORAWSKI R Z. Use of kinematic and mel-cepstrum-related features for fall detection based on data from infrared depth sensors[J]. Biomedical Signal Processing and Control, 2018, 40: 102-110.
[15] IRTAZA A, ADNAN S M, AZIZ S, et al. A framework for fall detection of elderly people by analyzing environmental sounds through acoustic local ternary patterns[C]//2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017: 1558-1563.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-10-17
基金项目:
国家自然科学基金资助项目(21276111);
江苏省产学研合作项目(BY2021419)
第一作者:
张新荣(1973—),男,陕西渭南人,淮阴工学院自动化学院,博士,副教授,主要从事无线传感器网络及其应用、分布式计算等方面的研究。
更新日期/Last Update: 1900-01-01