|本期目录/Table of Contents|

[1]王晓东,盛庆博,孙立群,等.基于AdaBoost算法的光伏电站中长期发电预测[J].工业仪表与自动化装置,2023,(02):65-69.[doi:10.19950/j.cnki.cn61-1121/th.2023.02.013]
 WANG Xiaodong,SHENG Qingbo,SUN Liqun,et al.Medium-and long-term generation capacity prediction of photovoltaic plants based on AdaBoost algorithm[J].Industrial Instrumentation & Automation,2023,(02):65-69.[doi:10.19950/j.cnki.cn61-1121/th.2023.02.013]
点击复制

基于AdaBoost算法的光伏电站中长期发电预测

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年02期
页码:
65-69
栏目:
出版日期:
2023-04-15

文章信息/Info

Title:
Medium-and long-term generation capacity prediction of photovoltaic plants based on AdaBoost algorithm
文章编号:
1000-0682(2023)02-0065-05
作者:
王晓东1盛庆博1孙立群2刘绍鹏1王新燕1刘 杰1
1.中国石化胜利油田有限公司 技术检测中心,山东 东营 257000;
2.中国石油大学(华东) 控制科学与工程学院,山东 青岛 266580
Author(s):
WANG Xiaodong1 SHENG Qingbo1 SUN Liqun2 LIU Shaopeng1 WANG Xinyan1 LIU Jie1
1. Technology Testing Center, Shengli Oilfield Co., LTD., Sinopec, Shandong Dongying 257000, China;
2. College of Control and Science Engineering, China University of Petroleum (East China), Shandong Qingdao 266580, China
关键词:
发电量预测光伏电站AdaBoost算法
Keywords:
power generation prediction photovoltaic power plant AdaBoost algorithm
分类号:
TP273
DOI:
10.19950/j.cnki.cn61-1121/th.2023.02.013
文献标志码:
A
摘要:
该文提出了一种基于AdaBoost算法的拟建光伏电站发电量预测方法。根据现有光伏电站的历史气象数据与发电量数据,在利用AdaBoost集成学习算法对传统SVM优化的基础上,对气象因素的天气类型进行分类与识别,进而得到4种天气状态下气象因素与发电量之间的对应关系;利用拟建电站所在地的历史气象数据,根据天气类型自动选择对应的LSTM模型,对拟建光伏电站的发电量进行预测。实验结果表明,与采用单一LSTM模型相比,该文方法预测精度有明显的提高,具有一定的推广价值。
Abstract:
This paper proposes a method for forecasting the generation of photovoltaic power plants to be built based on AdaBoost algorithm. According to the historical meteorological data and power generation data of existing photovoltaic power stations, and based on the optimization of traditional SVM using AdaBoost integrated learning algorithm, the method classifies and identifies the weather types of meteorological factors, and then obtains the corresponding relationship between meteorological factors and power generation under four weather conditions; Using the historical meteorological data of the place where the power station to be built is located, the corresponding LSTM model is automatically selected according to the weather type to predict the power generation of the photovoltaic power station to be built. The experimental results show that the prediction accuracy of this method is significantly improved compared with that of single LSTM model, and it has certain popularization value.

参考文献/References:

[1] 武明义,焦超凡.基于相似日算法及集成学习的短期光伏预测模型[J].电气技术,2021,22(04):33-37.

[2] 张雪松,李鹏,周亦尧,等.基于贝叶斯概率的光伏出力组合预测方法[J].太阳能学报,2021,42(10):80-86.
[3] 郭久俊.基于LSTM-AdaBoost的多晶硅生产的能耗预测[J].计算机应用与软件,2018,35(12):71-75+117.
[4] 赵宁.基于神经网络的三相整流电路故障诊断策略研究[J].国外电子测量技术,2021,40(3):88-93.
[5] 方鹏,高亚栋,潘国兵,等.基于LSTM神经网络的中长期光伏电站发电量预测方法研究[J].可再生能源,2022,40(01): 48-54.
[6] 田宏鑫,廉迎战,郭孔快,等.基于AdaBoost算法的永磁同步电机匝问短路故障诊断[J].工业控制计算机,2022,35(02): 143-144+146.
[7] 赖昌伟,黎静华,陈博,等.光伏发电出力预测技术研究综述[J].电工技术学报,2019,34(06):1201-1217.
[8] 陈垚,王亚君,于玉军.基于改进BP算法的医用X 线机电源研究[J].国外电子测量技术,2021,40(6):77-81.
[9] 邓呈格,钟志峰.人工智能算法在光伏发电量预测中的应用[J].物联网技术,2017,7(04):68-69.
[10] 俞娜燕,李向超,费科,等.基于SVR-UKF的光伏电站功率预测[J].自动化与仪器仪表,2020(04):73-77.

相似文献/References:

[1]盛庆博,王 涛,邹 林,等.模块化光伏电站参数采集系统设计[J].工业仪表与自动化装置,2023,(01):67.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.013]
 SHENG Qingbo,WANG Tao,ZOU Lin,et al.Design of parameter acquisition system for modular photovoltaic power station[J].Industrial Instrumentation & Automation,2023,(02):67.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.013]

备注/Memo

备注/Memo:
收稿日期:2022-11-28
第一作者:王晓东(1983—),男,山东即墨人,硕士,高级工程师,研究方向为油田节能技术。
更新日期/Last Update: 1900-01-01