|本期目录/Table of Contents|

[1]田 悦,袁德成.基于多策略改进狼群算法的机械臂路径规划[J].工业仪表与自动化装置,2023,(05):76-82+97.[doi:10.19950/j.cnki.cn61-1121/th.2023.05.016]
 TIAN Yue,YUAN Decheng.Robot path planning based on multi strategy improved wolf pack algorithm[J].Industrial Instrumentation & Automation,2023,(05):76-82+97.[doi:10.19950/j.cnki.cn61-1121/th.2023.05.016]
点击复制

基于多策略改进狼群算法的机械臂路径规划

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年05期
页码:
76-82+97
栏目:
出版日期:
2023-10-15

文章信息/Info

Title:
Robot path planning based on multi strategy improved wolf pack algorithm
文章编号:
1000-0682(2023)05-0076-07
作者:
田 悦袁德成
沈阳化工大学,辽宁 沈阳110142
Author(s):
TIAN YueYUAN Decheng
Shenyang University of Chemical Technology,Liaoning Shenyang 110142,China
关键词:
机械臂路径规划改进狼群算法自适应步长莱维飞行策略鲸鱼变螺旋围攻机制
Keywords:
underwater mechanical arm path planning multi-strategy improved WPA adaptive step-size levy flight whale spiral siege mechanism
分类号:
TP242
DOI:
10.19950/j.cnki.cn61-1121/th.2023.05.016
文献标志码:
A
摘要:
针对水下机械臂路径规划中基本狼群算法(wolf pack algorithm, WPA)收敛速度过慢,易陷入局部最优的问题,提出了一种基于多策略改进WPA的水下机械臂三维路径规划算法。该文采用混沌映射的Tent初始化方法改善了初始种群的均匀与遍历特性;对传统WPA算法中的游走、召唤行为的固定步长进行自适应化改进;游走阶段加入莱维飞行策略调整游走范围,提高全局寻优能力; 围攻阶段采用鲸鱼变螺旋围攻机制,以提升局部搜寻能力和寻优精度;最后针对同一三维场景分别运用传统WPA算法以及多策略改进WPA算法进行三维路径规划仿真实验。实验证明,在进行三维路径规划问题的求解时,改进后的WPA算法在收敛速度和全局搜索能力上有更好的表现。
Abstract:
In order to solve the problem that the traditional wolf pack algorithm (WPA) in underwater mechanical arm path planning had slow convergence speed and easily falls into local optima, a kind of three-dimensional path planning algorithm for underwater mechanical arm based on multi-strategy improved WPA was put forward. Initialization method of Tent chaotic map was adopted in this thesis to strengthen uniformity and ergodicity of initial population and make adaptive improvement for the fixed-step of random walk and calling behavior in traditional WPA. Levy flight strategy was added in random walk stage to adjust walking scope and improve global optimization capability. Whale varying spiral siege mechanism was used in siege stage to enhance the local searching ability of algorithm and the accuracy of optimization. Finally, traditional WPA and multi-strategy improved WPA were respectively applied in the same three-dimensional scene to conduct simulation experiment for three-dimensional path planning. The result suggests that improved WPA has better performance in terms of convergence speed and global s searching ability when solving three-dimensional path planning issues.

参考文献/References:

[1] HART P E,NILSSON N J,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2) : 100-107.

[2] 贾庆轩,陈钢,孙汉旭,等.基于A*算法的空间机械臂避障路径规划[J].机械工程学报,2010, 46(13):109-115.
[3] VINCENT R,MOHAMMED T,GILLES L.Fast genetic algorithm path planner for fixed-wing military UAV using GPU[J]. IEEE Transactions on Aerospace and Electronic Systems,2018,54(5): 2105-2117.
[4] VIEIRA R,ARGENTO E,REVOREDO T.Trajectory planning for car-like robots through curve parametrization and genetic algorithm optimization with applications to autonomous parking[J]. IEEE Latin America Transactions,2022,20(2): 309-316.
[5] LI W,TAN M,WANG L,et al.A cubic spline method combing improved particle swarm optimization for robot path planning in dynamic uncertain environment[J]. International Journal of Advanced Robotic Systems,2020,17(1): 1729881419891661.
[6] FU Y G,DING M Y,ZHOU C P.Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J]. IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans,2012,42(2): 511-526.
[7] LAVALLE S M.Rapidly-exploring random trees:a new tool for path planning[J]. Research Report,1999.
[8] 吴虎胜,张凤鸣,吴庐山.一种新的群体智能算法——狼群算法[J].系统工程与电子技术,2013,35(11):2430-2438.
[9] ZHANG L Y,ZHANG L,LIU S,et al.Three-dimensional underwater path planning based on modified wolf pack algorithm[J]. IEEE Access,2017,5: 22783-22795.
[10] LUNA M A,ALE ISAAC M S,RAGAB A R,et al.Fast multi-UAV path planning for optimal area coverage in aerial sensing applications[J]. Sensors,2022,22(6): 2297.
[11] YAO P,WANG H L,JI H X.Multi-UAVs tracking target in urban environment by model predictive control and improved grey wolf optimizer[J].Aerospace Science and Technology,2016,55: 131-143.
[12] 倪郁东,费学芳,沈吟东,等.基于改进狼群算法的移动机器人路径规划[J].合肥工业大学学报(自然科学版),019,42(10):1424-1430.
[13] 龚正,涂福泉,李圣伟.基于改进狼群算法的焊接机器人路径规划[J].传感器与微系统,2022,41(12):122-125.
[14] 李晓晨,刘子杨,李德远,等.六自由度水下机械手臂的设计与研究[J].液压与气动,2014(01):10-12+17.
[15] 谭民,徐德,侯增广.先进机器人控制[M].北京:高等教育出版社,2007:79-81.
[16] 刘松国.六自由度串联机器人运动优化与轨迹跟踪控制研究[D].杭州:浙江大学,2009.
[17] 王兆光.六自由度机械臂避障路径规划研究[D]. 成都:西南交通大学,2018.
[18] 单梁,强浩,李军,等.基于Tent映射的混沌优化算法[J].控制与决策,2005(02):179-182.
[19] 赵欣.不同一维混沌映射的优化性能比较研究[J].计算机应用研究,2012,29(03):913-915.
[20] 郭立婷.基于自适应和变游走方向的改进狼群算法[J].浙江大学学报(理学版),2018,45(03):284-293.
[21] WANG S,CAI W C,ZENG L.Research on MPPT based on gray wolf algorithm improved by levy flight[J]. Journal of Physics: Conference Series,2021,1865(4): 042089.
[22] GUO P,JIANG B.Research on path planning of three-dimensional UAV based on levy flight strategy and improved particle swarm optimization algorithm[C]// Research on Path planning of Three-Dimensional UAV Based on Levy Flight Strategy and Improved Particle Swarm Optimization Algorithm. 7th International Conference on Information Science and Control Engineering,ICISCE 2020,December 18,2020 - December 20,2020,Changsha,Hunan,China. Institute of Electrical and Electronics Engineers Inc. : 1199-1203.
[23] MANTEGNA R N.Fast, accurate algorithm for numerical simulation of levy stable stochastic processes[J]. Physical Review E,1994,49(5) : 4677-4683.
[24] MIRJALILI S,LEWIS A.The whale optimization algorithm[J]. Advances in Engineering Software,2016,95: 51-67.
[25] 刘磊,白克强,但志宏,等.一种全局搜索策略的鲸鱼优化算法[J].小型微型计算机系统,2020,41(09):1820-1825.

相似文献/References:

[1]顾平灿,徐月同.基于QPSO的双机器人同步焊接路径规划研究[J].工业仪表与自动化装置,2015,(05):75.
 GU Pingcan,XU Yuetong.Research on path planning of synchronous welding of dual robot based on QPSO[J].Industrial Instrumentation & Automation,2015,(05):75.
[2]张化平,王宇航,陈汉卿.六自由度机械臂运动学分析与仿真[J].工业仪表与自动化装置,2017,(05):127.
 ZHANG Huaping,WANG Yuhang,CHEN Hanqing.Kinematics analysis and simulation of six degrees of freedom manipulator[J].Industrial Instrumentation & Automation,2017,(05):127.
[3]胡 斌,刘海涛,聂健壕,等.基于LabVIEW分数阶控制器的机械臂控制[J].工业仪表与自动化装置,2018,(03):11.[doi:1000-0682(2018)03-0000-00]
 HU Bin,LIU Haitao,NIE Jianhao,et al.Control of mechanical arm based on LabVIEW fractional order controller[J].Industrial Instrumentation & Automation,2018,(05):11.[doi:1000-0682(2018)03-0000-00]
[4]马学成.机床上下料设备控制系统设计及应用[J].工业仪表与自动化装置,2019,(03):81.[doi:1000-0682(2019)03-0000-00]
 MA Xuecheng.Design and application of control system for machine tool[J].Industrial Instrumentation & Automation,2019,(05):81.[doi:1000-0682(2019)03-0000-00]
[5]孟祥忠,刘 健,李 鹏.多AGV定位和路径规划方法研究[J].工业仪表与自动化装置,2019,(05):7.[doi:1000-0682(2019)05-0000-00]
 MENG Xiangzhong,LIU Jian,LI Peng.Research on multi-AGV location and path planning method[J].Industrial Instrumentation & Automation,2019,(05):7.[doi:1000-0682(2019)05-0000-00]
[6]唐兴贵,和文云,马志艳,等.基于S7-1200PLC和时域分析的工业机器人移动轨迹最优化规划方法[J].工业仪表与自动化装置,2022,(02):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
 TANG Xinggui,HE Wenyun,MA Zhiyan,et al.Optimal trajectory planning method of industrial robot based on s7-1200plc and time domain analysis[J].Industrial Instrumentation & Automation,2022,(05):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
[7]郭 茜,袁德成.基于改进RRT*算法的可重构机器人路径规划[J].工业仪表与自动化装置,2023,(03):70.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.014]
 GUO Qian,YUAN Decheng.Path planning of reconfigurable robot based on improved RRT* algorithm[J].Industrial Instrumentation & Automation,2023,(05):70.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.014]
[8]高英剑,郭 平.基于改进A*算法的遥控水下机器人路径规划[J].工业仪表与自动化装置,2023,(03):75.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.015]
 GAO Yingjian,GUO Ping.Path planning of remotely operated vehicle based on improved A* algorithm[J].Industrial Instrumentation & Automation,2023,(05):75.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.015]
[9]徐 洁,张 锐,汪志锋.改进蚁群算法在自动导引车路径规划中的应用[J].工业仪表与自动化装置,2023,(03):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
 XU Jie,ZHANG Rui,WANG Zhifeng.Application of improved ant colony algorithm in AGV path planning[J].Industrial Instrumentation & Automation,2023,(05):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
[10]王俊彭,等.基于蚁群算法的人员疏散机器人路径规划方法[J].工业仪表与自动化装置,2023,(04):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]
 WANG Junpeng,,et al.Path planning method of personnel evacuation robot based on ant colony algorithm[J].Industrial Instrumentation & Automation,2023,(05):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]

备注/Memo

备注/Memo:
收稿日期:2023-04-21
第一作者:
田悦(1998—),女,硕士,学生,主要研究方向为水下机器人。
更新日期/Last Update: 1900-01-01