参考文献/References:
[1] HART P E,NILSSON N J,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2) : 100-107.[2] 贾庆轩,陈钢,孙汉旭,等.基于A*算法的空间机械臂避障路径规划[J].机械工程学报,2010, 46(13):109-115.
[3] VINCENT R,MOHAMMED T,GILLES L.Fast genetic algorithm path planner for fixed-wing military UAV using GPU[J]. IEEE Transactions on Aerospace and Electronic Systems,2018,54(5): 2105-2117.
[4] VIEIRA R,ARGENTO E,REVOREDO T.Trajectory planning for car-like robots through curve parametrization and genetic algorithm optimization with applications to autonomous parking[J]. IEEE Latin America Transactions,2022,20(2): 309-316.
[5] LI W,TAN M,WANG L,et al.A cubic spline method combing improved particle swarm optimization for robot path planning in dynamic uncertain environment[J]. International Journal of Advanced Robotic Systems,2020,17(1): 1729881419891661.
[6] FU Y G,DING M Y,ZHOU C P.Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J]. IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans,2012,42(2): 511-526.
[7] LAVALLE S M.Rapidly-exploring random trees:a new tool for path planning[J]. Research Report,1999.
[8] 吴虎胜,张凤鸣,吴庐山.一种新的群体智能算法——狼群算法[J].系统工程与电子技术,2013,35(11):2430-2438.
[9] ZHANG L Y,ZHANG L,LIU S,et al.Three-dimensional underwater path planning based on modified wolf pack algorithm[J]. IEEE Access,2017,5: 22783-22795.
[10] LUNA M A,ALE ISAAC M S,RAGAB A R,et al.Fast multi-UAV path planning for optimal area coverage in aerial sensing applications[J]. Sensors,2022,22(6): 2297.
[11] YAO P,WANG H L,JI H X.Multi-UAVs tracking target in urban environment by model predictive control and improved grey wolf optimizer[J].Aerospace Science and Technology,2016,55: 131-143.
[12] 倪郁东,费学芳,沈吟东,等.基于改进狼群算法的移动机器人路径规划[J].合肥工业大学学报(自然科学版),019,42(10):1424-1430.
[13] 龚正,涂福泉,李圣伟.基于改进狼群算法的焊接机器人路径规划[J].传感器与微系统,2022,41(12):122-125.
[14] 李晓晨,刘子杨,李德远,等.六自由度水下机械手臂的设计与研究[J].液压与气动,2014(01):10-12+17.
[15] 谭民,徐德,侯增广.先进机器人控制[M].北京:高等教育出版社,2007:79-81.
[16] 刘松国.六自由度串联机器人运动优化与轨迹跟踪控制研究[D].杭州:浙江大学,2009.
[17] 王兆光.六自由度机械臂避障路径规划研究[D]. 成都:西南交通大学,2018.
[18] 单梁,强浩,李军,等.基于Tent映射的混沌优化算法[J].控制与决策,2005(02):179-182.
[19] 赵欣.不同一维混沌映射的优化性能比较研究[J].计算机应用研究,2012,29(03):913-915.
[20] 郭立婷.基于自适应和变游走方向的改进狼群算法[J].浙江大学学报(理学版),2018,45(03):284-293.
[21] WANG S,CAI W C,ZENG L.Research on MPPT based on gray wolf algorithm improved by levy flight[J]. Journal of Physics: Conference Series,2021,1865(4): 042089.
[22] GUO P,JIANG B.Research on path planning of three-dimensional UAV based on levy flight strategy and improved particle swarm optimization algorithm[C]// Research on Path planning of Three-Dimensional UAV Based on Levy Flight Strategy and Improved Particle Swarm Optimization Algorithm. 7th International Conference on Information Science and Control Engineering,ICISCE 2020,December 18,2020 - December 20,2020,Changsha,Hunan,China. Institute of Electrical and Electronics Engineers Inc. : 1199-1203.
[23] MANTEGNA R N.Fast, accurate algorithm for numerical simulation of levy stable stochastic processes[J]. Physical Review E,1994,49(5) : 4677-4683.
[24] MIRJALILI S,LEWIS A.The whale optimization algorithm[J]. Advances in Engineering Software,2016,95: 51-67.
[25] 刘磊,白克强,但志宏,等.一种全局搜索策略的鲸鱼优化算法[J].小型微型计算机系统,2020,41(09):1820-1825.
相似文献/References:
[1]顾平灿,徐月同.基于QPSO的双机器人同步焊接路径规划研究[J].工业仪表与自动化装置,2015,(05):75.
GU Pingcan,XU Yuetong.Research on path planning of synchronous welding of dual robot based on QPSO[J].Industrial Instrumentation & Automation,2015,(05):75.
[2]张化平,王宇航,陈汉卿.六自由度机械臂运动学分析与仿真[J].工业仪表与自动化装置,2017,(05):127.
ZHANG Huaping,WANG Yuhang,CHEN Hanqing.Kinematics analysis and simulation of six degrees of freedom manipulator[J].Industrial Instrumentation & Automation,2017,(05):127.
[3]胡 斌,刘海涛,聂健壕,等.基于LabVIEW分数阶控制器的机械臂控制[J].工业仪表与自动化装置,2018,(03):11.[doi:1000-0682(2018)03-0000-00]
HU Bin,LIU Haitao,NIE Jianhao,et al.Control of mechanical arm based on LabVIEW fractional order controller[J].Industrial Instrumentation & Automation,2018,(05):11.[doi:1000-0682(2018)03-0000-00]
[4]马学成.机床上下料设备控制系统设计及应用[J].工业仪表与自动化装置,2019,(03):81.[doi:1000-0682(2019)03-0000-00]
MA Xuecheng.Design and application of control system for machine tool[J].Industrial Instrumentation & Automation,2019,(05):81.[doi:1000-0682(2019)03-0000-00]
[5]孟祥忠,刘 健,李 鹏.多AGV定位和路径规划方法研究[J].工业仪表与自动化装置,2019,(05):7.[doi:1000-0682(2019)05-0000-00]
MENG Xiangzhong,LIU Jian,LI Peng.Research on multi-AGV location and path planning method[J].Industrial Instrumentation & Automation,2019,(05):7.[doi:1000-0682(2019)05-0000-00]
[6]唐兴贵,和文云,马志艳,等.基于S7-1200PLC和时域分析的工业机器人移动轨迹最优化规划方法[J].工业仪表与自动化装置,2022,(02):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
TANG Xinggui,HE Wenyun,MA Zhiyan,et al.Optimal trajectory planning method of industrial robot based on s7-1200plc and time domain analysis[J].Industrial Instrumentation & Automation,2022,(05):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
[7]郭 茜,袁德成.基于改进RRT*算法的可重构机器人路径规划[J].工业仪表与自动化装置,2023,(03):70.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.014]
GUO Qian,YUAN Decheng.Path planning of reconfigurable robot based on improved RRT* algorithm[J].Industrial Instrumentation & Automation,2023,(05):70.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.014]
[8]高英剑,郭 平.基于改进A*算法的遥控水下机器人路径规划[J].工业仪表与自动化装置,2023,(03):75.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.015]
GAO Yingjian,GUO Ping.Path planning of remotely operated vehicle based on improved A* algorithm[J].Industrial Instrumentation & Automation,2023,(05):75.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.015]
[9]徐 洁,张 锐,汪志锋.改进蚁群算法在自动导引车路径规划中的应用[J].工业仪表与自动化装置,2023,(03):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
XU Jie,ZHANG Rui,WANG Zhifeng.Application of improved ant colony algorithm in AGV path planning[J].Industrial Instrumentation & Automation,2023,(05):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
[10]王俊彭,等.基于蚁群算法的人员疏散机器人路径规划方法[J].工业仪表与自动化装置,2023,(04):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]
WANG Junpeng,,et al.Path planning method of personnel evacuation robot based on ant colony algorithm[J].Industrial Instrumentation & Automation,2023,(05):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]