|本期目录/Table of Contents|

[1]陈 玉,陈 星,向腾龙,等.克劳斯硫磺回收余热锅炉水温控制系统优化[J].工业仪表与自动化装置,2024,(03):15-21.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.003]
 CHEN Yu,CHEN Xing,XIANG Tenglong,et al.Optimization of heat recovery steam generator water temperature control system for Claus sulfur recovery[J].Industrial Instrumentation & Automation,2024,(03):15-21.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.003]
点击复制

克劳斯硫磺回收余热锅炉水温控制系统优化(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年03期
页码:
15-21
栏目:
出版日期:
2024-06-15

文章信息/Info

Title:
Optimization of heat recovery steam generator water temperature control system for Claus sulfur recovery
文章编号:
1000-0682(2024)03-0015-07
作者:
陈 玉1陈 星2向腾龙1张履胜1王治红1
(1.西南石油大学 化学化工学院,四川 成都 610500;2.长庆油田分公司 第一天然气净化厂,陕西 靖边 718500)
Author(s):
CHEN Yu1 CHEN Xing2 XIANG Tenglong1 ZHANG Lvsheng1 WANG Zhihong1
(1. School of Chemistry and Chemical Engineering, Southwest Petroleum University, Sichuan Chengdu 610500, China; 2. The First Natural Gas Plant of Changqing Oil-field Constituent Company, Shaanxi Jingbian 718500 , China)
关键词:
克劳斯硫磺回收Simulink余热锅炉水温权重系数S-函数复合控制器
Keywords:
Claus sulfur recovery Simulinkwaste heat boiler water temperatureweight coefficientS-function composite controller
分类号:
TP273
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.003
文献标志码:
A
摘要:
在化工生产过程中,为了减少危险的高温设备操作和安全事故的发生,针对余热锅炉水温控制系统的时变性、滞后性等特点,进行了控制系统优化研究。在MATLAB/Simulink平台建模仿真,比较了常规PID控制、模糊自适应PID控制、串级控制效果,发现各控制方案都存在各自的优缺点。为了利用各控制方案的优点同时减弱其缺陷,提出了复合控制方案对系统进行控制,通过调节各控制器权重系数的方法将选中的控制器复合为一个控制器。PID 控制、串级控制、模糊控制、复合控制和S-函数复合控制系统的响应曲线在230 s、300 s、180 s、130 s和106 s达到稳定。S-函数复合控制响应快、无超调、控制精度较高,达到了使控制系统安全稳定的目的,有效提高了克劳斯硫磺回收燃烧炉余热回收效率。
Abstract:
In the process of chemical production, in order to reduce the occurrence of hazardous high-temperature equipment operations and safety accidents, a study on the optimization of the control system for the water temperature of the waste heat boiler is conducted, targeting its characteristics such as time-varying and hysteresis. The effects of conventional PID control, fuzzy adaptive PID control and cascade control are compared by modeling and simulation on MATLAB/Simulink platform. It is found that each control scheme has its own advantages and disadvantages. In order to make use of the advantages of each control scheme and reduce its defects at the same time, a compound control scheme is proposed to control the system, and the selected controller is combined into a controller by adjusting the weight coefficient of each controller. The response curves of PID control, cascade control, fuzzy control, compound control and S-function compound control system were stable at 230s, 300 s, 180 s, 130 s and 106 s. The S-function compound control has the advantages of fast response, no overshoot and high control precision, which makes the control system safe and stable and effectively improves the waste heat recovery efficiency of Claus sulfur recovery combustion furnace.

参考文献/References:

[1] 沈雅斐.克劳斯硫磺回收控制系统研究与设计[D].西安:陕西科技大学,2018.

[2] 赵景波,王众,廖鹏浩.基于粒子群优化算法的蒸汽温度控制研究[J].制造业自动化,2020,42(06):107-111.
[3] Jafar Tavoosi. Intelligent Model Predictive Control for Boiler Temperature[J]. Automatic Control and Computer Sciences,2021,55:16-25.
[4] 韦晓儒,王志萍.基于多容惯性标准传递函数的锅炉内胆水温PID控制[J].上海电力学院学报,2015,31(3): 288-292.
[5] Lim Sanghun, Yook Youngjin, Heo Jea Pil, et al. A new PID controller design using differential operator for the integrating process[J]. Computers & Chemical Engineering, 2023, 170: 108105.
[6] 任有志,杨亚威,曾谦,等.BP神经网络PID控制器在聚合釜温控中的应用[J].现代化工,2016,36(02):165-167+169.
[7] 曾喆昭,刘文珏.自耦PID控制器[J].自动化学报,2021,47(2):404-422.
[8] 王泽教,王恒升,江亮亮,等.基于模糊PID的挂面烘房温度控制[J].制造业自动化,2022,44(3):76-80.
[9] 闫磊,王萌,朱烨繁.双目视觉云台模糊自适应PID跟踪控制[J].控制工程,2022,29(11):2003-2009.
[10] Cheung-Chieh Ku;Chein-Chung Sun;Shao-Hao Jian;Wen-Jer Chang.Passive Fuzzy Controller Design for the Parameter-Dependent Polynomial Fuzzy Model[J].Mathematics,2023,11(2482): 2482.
[11] 骆东松,孙冠琼.基于模糊控制的真空退火炉温度控制系统[J].控制工程,2019,26(04):625-630.[12] Voskoglou, Michael Gr. Fuzzy Logic in Control Theory[J]. Lecture Notes in Networks and Systems, 2022, 224:217-228.
[13] 宋英杰,王刚,唐武生,等.基于模糊自适应串级PID控制器的仿生机器鱼位姿控制[J]. 控制工程,2023,30(10):1870-1880.
[14] 孙雪婷,王晓霖,陈钢.炼油化工的先进控制技术应用进展[J].现代化工,2022,42(01):40-45.
[15] Ruomei Qi, Jiarong Li, Jin Lin, et al. Design of the PID temperature controller for an alkaline electrolysis system with time delays[J]. International Journal of Hydrogen Energy,2023,48(50): 19008-19021.
[16] 王懋譞,王永富,柴天佑,等.基于权重因子自校正的主蒸汽温度外挂广义预测串级控制[J].自动化学报, 2022,48(2):418-433.
[17] 李会岳.基于粒计算的模糊控制器设计及仿真应用研究[D].大连:大连理工大学,2022.
[18] 曹振乾,印江,张津华,等.基于改进粒子群优化的主蒸汽温度模糊串级控制[J]. 控制工程,2022,29(4):699-706.
[19] 毕涛,刘迪,杨莉莉.基于串级控制系统控制液位的设计与分析[J].船电技术,2022,42(1): 1-4.
[20] 林巍,王亚刚.串级控制系统闭环辨识及PID参数整定[J].控制工程,2018,25(1):11-18.
[21] 贾默伊,刘钊.人群搜索算法溶剂回收塔温控系统设计[J].化学工程,2018,46(03):74-78.
[22] 荆中亚,陈为.基于STM32的密炼机自整定PID温控系统设计[J].电子设计工程,2024,32(5):51-55.
[23] 姚立平,刘伟章,吴文明,等.一种引入微分先行的PID算法在温控系统中的应用[J].电子设计工程,2023,31(7):16-20.

相似文献/References:

[1]邹益民.基于SIMULINK-S函数的联合站脱水单神经元PID仿真[J].工业仪表与自动化装置,2014,(05):29.
 ZOU Yimin.Simulation of single neuron PID control for the union station crude oil dehydration process based on SIMULINK-S functions[J].Industrial Instrumentation & Automation,2014,(03):29.
[2]李俊秀,李明旭.基于DSP电压闪变在线检测方法及仿真[J].工业仪表与自动化装置,2015,(05):117.
 LI Junxiu,LI Mingxu.The Research of the Voltage flicker detection methods online based on the DSP[J].Industrial Instrumentation & Automation,2015,(03):117.
[3]侯 伟,员三妮.基于模糊PI的三电机同步控制方法研究[J].工业仪表与自动化装置,2018,(05):60.[doi:1000-0682(2018)05-0000-00]
 HOUI Wei,YUAN Sanni.Research of three motor synchronously control based on fuzzy PI controller[J].Industrial Instrumentation & Automation,2018,(03):60.[doi:1000-0682(2018)05-0000-00]
[4]顾泽堃,陈启东*.喷雾闪蒸过程的数学模型建立[J].工业仪表与自动化装置,2019,(05):16.[doi:1000-0682(2019)05-0000-00]
 GU Zekun,CHEN Qidong*.The establish of a mathematical model for spray flash evaporation[J].Industrial Instrumentation & Automation,2019,(03):16.[doi:1000-0682(2019)05-0000-00]
[5]陈 露,李 凌.直流电机转速系统控制方法仿真研究[J].工业仪表与自动化装置,2021,(05):29.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.007]
 CHEN Lu,LI Ling.Simulation research on control method of DC motor speed system[J].Industrial Instrumentation & Automation,2021,(03):29.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.007]
[6]苏 杨,余 萱,卢 翔,等.基于BP神经网络PID机房温度控制研究[J].工业仪表与自动化装置,2022,(02):102.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.021]
 SU Yang,YU Xuan,LU xiang,et al.Research on temperature control of PID computer room based on BP neural network[J].Industrial Instrumentation & Automation,2022,(03):102.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.021]

备注/Memo

备注/Memo:
收稿日期:2024-01-08第一作者:陈玉(1998—),男,四川乐山人,硕士研究生在读,研究方向为过程控制方面。
更新日期/Last Update: 1900-01-01