参考文献/References:
[1] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018:2818-2826.[2] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[3] 吴正文.卷积神经网络在图像分类中的应用研究[D].成都:电子科技大学, 2015.
[4] 吴进,钱雪忠.紧凑型深度卷积神经网络在图像识别中的应用[J].计算机科学与探索,2019,13(02):275-284.?/div>
[5] 杨珂,李从敏,周维勋,等.卷积神经网络多层特征联合的遥感图像检索[J].测绘科学,2019, 44(07):9-15+34.?/div>
[6] 邢世宏,施闻明,任荟洁.不同数据集容量下的卷积神经网络图像识别性能[J].舰船科学技术,2019,41(21): 188-193.
[7] 花如祥,吴国新,徐小力.卷积神经网络在图像识别中的优化研究[J].电子测量技术,2018,41(24):62-66.
[8] 林健巍.YOLO图像检测技术综述[J].福建电脑,2019(09): 80-83.
[9] 艾心.基于深度卷积神经网络的人脸识别研究[D].北京:北京邮电大学,2019.
[10] HE K M, ZHANG X, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on image net classification[C]. IEEE International Conference on Computer Vision (ICCV),2015, 1026-1034.
[11] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]. AISTATS, Sardinid, 2019:249-256.
[12] ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J].Ar Xiv,2019, abs/1911. 02685.
[13] 汤高扬.基于MobileNet的目标跟踪算法研究与实现[D].广州:广东工业大学,2019.
[14] 杨炜,周凯霞,刘佳俊,等.结合迁移学习和Inception-V3模型的路面干湿状态识别方法[J].中国科技论文,2019, 14(08): 912-916.
[15] 张学典,顾璋琦,秦晓飞.基于VGG16模型的快速闭环检测算法[J].光学仪器,2019,41(03):20-26.
[16] SZEGEDY C, LIU W , JIA Y Q,et al. Going deeper with convolutions[C].IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 2015:1-9.
相似文献/References:
[1]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(01):75.
[2]郑昌庭,王 俊,郑 克.基于图像识别的变电站巡检机器人仪表识别研究[J].工业仪表与自动化装置,2020,(05):57.[doi:1000-0682(2020)05-0000-00]
ZHENG Changting,WANG Jun,ZHENG Ke.Research on instrument recognition of substation inspection robot based on image recognition[J].Industrial Instrumentation & Automation,2020,(01):57.[doi:1000-0682(2020)05-0000-00]
[3]吕意飞,鲜 龙,文秀梅,等.变电站室内渗漏雨风险识别与实时告警装置的设计与应用[J].工业仪表与自动化装置,2020,(06):17.[doi:1000-0682(2020)06-0000-00]
LYifei,XIAN Long,WEN Xiumei,et al.Design and application of risk identification and real-time warning device for indoor leakage rain in substation[J].Industrial Instrumentation & Automation,2020,(01):17.[doi:1000-0682(2020)06-0000-00]