|本期目录/Table of Contents|

[1]赵 勇,史亚斌,何军红,等.基于Pareto改进的混合算法求解多目标柔性车间调度问题[J].工业仪表与自动化装置,2021,(03):10-15+49.[doi:1000-0682(2021)03-0000-00]
 ZHAO Yong,SHI Yabin,HE Junhong,et al.Multi-objective flexible shop scheduling problem with hybrid algorithm based on Pareto[J].Industrial Instrumentation & Automation,2021,(03):10-15+49.[doi:1000-0682(2021)03-0000-00]
点击复制

基于Pareto改进的混合算法求解多目标柔性车间调度问题

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2021年03期
页码:
10-15+49
栏目:
出版日期:
2021-06-15

文章信息/Info

Title:
Multi-objective flexible shop scheduling problem with hybrid algorithm based on Pareto
作者:
赵 勇1史亚斌1何军红2刘 赛2马国伟2
1.西安高压电器研究院有限责任公司,陕西 西安 710077;
2.西北工业大学 航海学院,陕西 西安 710072
Author(s):
ZHAO Yong1SHI Yabin1 HE Junhong2LIU Sai2MA Guowei2
1.Xi’an High Voltage Apparatus Research Institute Co.,Ltd.,Shaanxi Xi’an 710077,China;
2.School of Marine Science and Technology, Northwestern Polytechnical University, Shaanxi Xi’an 710072,China
关键词:
多目标优化混合算法小生境技术粒子群算法
Keywords:
multi-objective optimization hybrid algorithm niche genetic algorithm particle swarm optimization
分类号:
TH165
DOI:
1000-0682(2021)03-0000-00
文献标志码:
A
摘要:
针对多目标柔性作业车间调度问题,该文建立优化目标为最大完工时间、机器平均相对空闲率以及机器总负荷最小化的数学模型,并设计一种基于Pareto改进的自适应混合算法(NGA-PSO)。其算法采用分层结构相结合,底层采用基于隔离的小生境技术(Niche genetic algorithm,NGA),上层采用粒子群算法(Particle swarm optimization,PSO)。为提高算法的收敛效率和求解精度,提出了改进策略,采用适应度值分配策略作为种群选择的评价标准;设计动态的交叉变异概率,使算子在迭代过程自适应地对种群的寻优操作进行调整。最后,针对10个单目标基准案例与3个多目标典型案例进行仿真求解,通过与其他前沿算法进行对比验证NGA-PSO算法的优越性。
Abstract:
In order to solve the multi-objective flexible job shop scheduling problem, the paper establishes a mathematical model that optimizes the maximum completion time, the average relative idle rate of the machine, and minimizes the total load of the machine, and designs an improved adaptive hybrid algorithm based on Pareto (NGA-PSO ). The algorithm adopts a hierarchical structure, the bottom layer adopts isolation-based niche technology (Niche genetic algorithm, NGA), and the upper layer adopts particle swarm optimization (PSO). In order to improve the convergence efficiency and solution accuracy of the algorithm, an improved strategy is proposed. The fitness value allocation strategy is used as the evaluation standard for population selection; the dynamic cross-mutation probability is designed to make the operator adaptively optimize the population during the iterative process Make adjustments. Finally, 10 single-objective benchmark cases and 3 multi-objective typical cases are simulated and solved, and the superiority of the NGA-PSO algorithm is verified by comparison with other cutting-edge algorithms.

参考文献/References:

[1] ALVAREZ-VALDES R , FUERTES A , TAMARIT J M , et al. A heuristic to schedule flexible job-shop in a glass factory[J]. European Journal of Operational Research, 2005, 165(2):525-534.

[2] 王思涵,黎阳,李新宇.基于鲸鱼群算法的柔性作业车间调度方法[J].重庆大学学报,2020,43(01):1-11.
[3] DAI min, TANG dunbing,GIRET adrian. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm[J]. Robotics and Computer-Integrated Manufacturing, 29 (2013) :418–429.
[4] 陈水清.基于APS的多目标柔性作业车间排程与优化技术研究[D].昆明:昆明理工大学,2014.
[5] COCHRAN K J,HOMGS M, FOWLER W. A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines[J]. Computers & Operations Research, 2003, 30 (7) :1087-1120.
[6] 牟健慧,潘全科,牟建彩,等.基于遗传变邻域混合算法的带交货期的单机车间逆调度方法[J].机械工程学报, 2018,54(03):148-159.
[7] 王建华,潘宇杰,孙瑞.考虑机床折旧的柔性作业车间绿色调度算法[J].计算机应用,2020,40(01):43-49.
[8] ZIAEE mohsen. A heuristic algorithm for solving flexible job shop scheduling problem[J]. Springer London,2014,71(1-4).
[9] 姜天华.基于灰狼优化算法的低碳车间调度问题[J].计算机集成制造系统,2018,24(10):2428-2435.
[10] 姜天华.混合灰狼优化算法求解柔性作业车间调度问题[J].控制与决策,2018,33(03):503-508.
[11] ZHANG guohui, GAO liang, SHI yang. An effective genetic algorithm for the flexible job-shop scheduling problem[J]. Expert Systems with Applications, 2011, 38(4): 3563-3573.
[12] 肖华军,柴子力,张超勇,等.基于混合化学反应算法的柔性作业车间调度[J].计算机集成制造系统,2018,24(09): 2234-2245.
[13] 高亮,张国辉,王晓娟.柔性作业车间调度智能算法及其应用[M].华中科技大学出版社,2012.
[14] XIA weijun , WU zhiming. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[J]. Computers & Industrial Engineering, 2005, 48(2).

相似文献/References:

[1]朱里红.大口径厚壁管中频弯制工艺参数多目标优化[J].工业仪表与自动化装置,2018,(05):43.[doi:1000-0682(2018)05-0000-00]
 ZHU Lihong.Multi-objective optimization of medium frequency induction heating process for large diameter pipe bending[J].Industrial Instrumentation & Automation,2018,(03):43.[doi:1000-0682(2018)05-0000-00]

备注/Memo

备注/Memo:
收稿日期:2020-12-04
作者简介:赵勇(1974),男,甘肃天水人,工程师,主要从事自动控制系统设计及应用工作。
更新日期/Last Update: 1900-01-01