|本期目录/Table of Contents|

[1]顾正宜.基于神经网络和等SCOP算法的中央空调节能控制技术研究[J].工业仪表与自动化装置,2021,(03):131-133.[doi:1000-0682(2021)03-0000-00]
 GU Zhengyi.Research on energy saving control technology of central air conditioning based on neural network and equal SCOP algorithm[J].Industrial Instrumentation & Automation,2021,(03):131-133.[doi:1000-0682(2021)03-0000-00]
点击复制

基于神经网络和等SCOP算法的中央空调节能控制技术研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2021年03期
页码:
131-133
栏目:
出版日期:
2021-06-15

文章信息/Info

Title:
Research on energy saving control technology of central air conditioning based on neural network and equal SCOP algorithm
作者:
顾正宜
中铁上海设计院集团有限公司,上海 200070
Author(s):
GU Zhengyi
China Railway Shanghai Design Institute Group Co. Ltd.,Shanghai 200070,China
关键词:
等SCOP神经网络节能群控中央空调
Keywords:
Equal-SCOP neural network energy-saving control central air conditioning
分类号:
TU831.3
DOI:
1000-0682(2021)03-0000-00
文献标志码:
B
摘要:
为了提高中央空调节能控制系统的通用性和控制精度,该文利用神经网络算法建立了系统各设备的数学模型,并开发了等SCOP算法对模型进行能效最优求解。该文以某地铁项目冷冻机房设备配置应用为例,利用厂家提供的设备设计性能模型,验证了神经网络模型的精度以及等SCOP算法的可行性。同时研究也发现,利用设计模型数据训练的神经网络模型直接用于实际项目控制,会带来较大误差。模型需要根据现场实际数据进行训练,才能提高控制精度。
Abstract:
In order to improve the versatility and control precision of the central air conditioning energy-saving control system, the mathematical model of each device in the system is established by using the neural network algorithm, and the EQUAL-SCOP algorithm is developed to solve the optimal energy efficiency of the model. In this paper, the application of equipment configuration of a subway project is taken as an example, and the accuracy of the neural network model and the feasibility of the EQUAL-SCOP algorithm are verified by using the equipment design performance model provided by the manufacturer. At the same time, the study also found that the neural network model trained by the design model data directly used in the actual project control will bring large errors. The model needs to be trained according to the actual data in the field to improve the control precision.

参考文献/References:

[1]张雅欣,罗荟霖,王灿.碳中和行动的国际趋势分析[J].气候变化研究进展,2021,17(01):88-97.

[2]王建伟.大型公共建筑中央空调系统节能运行管理[J].城市建筑,2017(08):126.
[3]沈善德.电力系统辨识[M].清华大学出版社,1993.
[4]马丁T.哈根.神经网络设计(第2版)[M].机械工业出版社,2018.
[5]王顺岩,张建新,刘健洪.化工过程的集成建模方法研究[J].制造业自动化,2009,31(10):139-141.

相似文献/References:

[1]邹益民.基于SIMULINK-S函数的联合站脱水单神经元PID仿真[J].工业仪表与自动化装置,2014,(05):29.
 ZOU Yimin.Simulation of single neuron PID control for the union station crude oil dehydration process based on SIMULINK-S functions[J].Industrial Instrumentation & Automation,2014,(03):29.
[2]刘若涵,赵振民,赵 杰.基于神经网络与遗传算法的悬臂式掘进机智能控制系统[J].工业仪表与自动化装置,2014,(06):67.
 LIU Ruohan,ZHAO Zhenmin,ZHAO Jie.The boom-type roadheader intelligent control system based on neural network and genetic algorithms[J].Industrial Instrumentation & Automation,2014,(03):67.
[3]胥 良,贾宪生.基于神经网络的PID控制方法在矿井提升机中的应用[J].工业仪表与自动化装置,2015,(02):77.
 XU Liang,JIA Xiansheng.Based on neural network PID control methods in the study of the application of the mine hoist[J].Industrial Instrumentation & Automation,2015,(03):77.
[4]赵洪瑞,王洪远,朱素杰,等.基于RBF神经网络的镜头畸变校正方法[J].工业仪表与自动化装置,2015,(02):81.
 ZHAO Hongrui,WANG Hongyuan,ZHU Sujie,et al.The study of lens distortion correction based on radiate basis function neural networks[J].Industrial Instrumentation & Automation,2015,(03):81.
[5]陈宏希,邹益民.基于OPC的MATLAB与S7-200 PLC实时通信在过程控制实验装置中应用[J].工业仪表与自动化装置,2015,(05):55.
 CHEN Hongxi,ZOU Yimin.Research on application of real-time communication of MATLAB with S7-200 PLC in process control experimental device based on OPC[J].Industrial Instrumentation & Automation,2015,(03):55.
[6]刘 俊.基于搜寻者优化算法的PID神经网络解耦控制[J].工业仪表与自动化装置,2015,(05):97.
 LIU Jun.PID neural network decoupling control based on seeker optimization algorithm[J].Industrial Instrumentation & Automation,2015,(03):97.
[7]胥 良,郭 林,梁 亚,等.基于模糊RBF神经网络的智能PID控制[J].工业仪表与自动化装置,2015,(06):67.
 XU Liang,GUO Lin,LIANG Ya,et al.Study on intelligent PID control based on fuzzy RBF neural network[J].Industrial Instrumentation & Automation,2015,(03):67.
[8]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(03):21.
[9]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
 YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(03):75.
[10]李彦晶,张亚萍,罗 钿.基于BP神经网络的马铃薯收获机挖掘铲的参数优化[J].工业仪表与自动化装置,2018,(06):122.[doi:1000-0682(2018)06-0000-00]
 LI Yanjing,ZHANG Yaping,LUO Tian.Parameters optimization of potato harvester digger blade based on BP neural network[J].Industrial Instrumentation & Automation,2018,(03):122.[doi:1000-0682(2018)06-0000-00]

备注/Memo

备注/Memo:
收稿日期:2021-03-18
作者简介:顾正宜(1979),男,上海人,本科,高级工程师,从事城市轨道交通智慧运维设计及研究工作。
更新日期/Last Update: 1900-01-01