|本期目录/Table of Contents|

[1]单宝明,胥喜龙.一种结合ORB算法的SIFT图像配准算法[J].工业仪表与自动化装置,2017,(02):27-30.
 SHAN Baoming,XU Xilong.A SIFT image registration algorithm combined with ORB algorithm[J].Industrial Instrumentation & Automation,2017,(02):27-30.
点击复制

一种结合ORB算法的SIFT图像配准算法

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2017年02期
页码:
27-30
栏目:
出版日期:
2017-04-15

文章信息/Info

Title:
A SIFT image registration algorithm combined with ORB algorithm
文章编号:
1000-0682(2017)02-0000-00
作者:
单宝明胥喜龙
(青岛科技大学 自动化与电子工程学院,山东 青岛 266042)
Author(s):
SHAN Baoming XU Xilong
(College of Automation & Electronic Engineering, Qingdao University of Science &Technology,Shandong Qingdao 266042,China )
关键词:
SIFT特征提取特征匹配ORB算法
Keywords:
SIFT Feature extraction Feature matching ORBalgorithm
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
在基于SIFT算法的图像配准过程当中有两个重要的环节:特征提取和特征匹配。针对算法在特征提取时存在的计算大、复杂度高、速度慢等问题,该文提出了结合ORB算法的思想,对SIFT算法进行特征提取的优化,从而实现快速的提取图像的局部特征。在特征匹配阶段采用K最近邻的BBF搜索策略并结合RANSAC算法进行提纯,消除误配点。实验结果表明,改进后的算法降低了配准时间并且提高了配准的精度,适用于一些对实时性要求较高的场合。
Abstract:
In the process of image registration based on SIFT algorithm, there are two important steps: feature extraction and feature matching.In view of the problem of large computation, high complexity and slow speed in feature extraction,this paper puts forward the idea of combining ORB algorithm, the SIFT algorithm to optimize the feature extraction, so as to achieve the rapid extraction of local features of the image.In the feature matching stage, the BBF search strategy of K nearest neighbor is adopted and the RANSAC algorithm is used to purify and eliminate the error matching point.The experimental results show that the improved algorithm can reduce the registration time and improve the accuracy of registration, which is suitable for the occasions with high real-time requirements.

参考文献/References:

[1] Lowe D G. Distinctive Image Features from Scale- invariant Keypoints[C].International Journal on Computer Vision, 2004,60(2):91-110.

[2] Herbert Bay,AndreasEss,TinneTuytelaar,et al.Speeded-up RobustFeatures(SURF)[J].Computer Vision and Image Understanding, 2008,110(3):346-359.
[3] Jean-Michel Morel, Guoshen Yu. ASIFT: A New Framework for Fully Affine Invariant Image Comparison [J].SIAM Journal on Imaging Sciences,2009,2(2): 438-469.
[4] RubleeE,RabaudV,KonoligeK,et al. ORB: An efficient alternativeto SIFT or SURF[C]. Proceedings of the IEEE International Conference on Computer Vision,2011: 2564-2571.
[5] Rosten E,Drummond T. Fusing points and lines for high performance tracking[C].Computer Vision,2005:1508- 1515.
[6] 戴宪彪,王亮.基于SIFT特征的月面模拟环境视差估计[J].计算机测量与控制,2011,19(12):3072-3074.
[7] 许宏科,秦严严,陈会茹.基于改进ORB的图像特征点匹配[J].科学技术与工程,2014,14(18):105-109.
[8] 陈慧颖,刘进,杨洁,等.基于ORB算法改进的影像匹配方法[J].测绘地理信息,2015,40(3):31-33.
[9] 李小红,谢成明,贾易臻,等.基于ORB特征的快速目标检测算法[J].电子测量与仪器学报,2013,27(5):455- 460.
[10] 许佳佳.结合Harris与SIFT算子的图像快速配准算法[J].中国光学,2015,8(4):574-581.
[11] 刘佳,傅卫平,王雯,等.基于改进SIFT算法的图像匹配[J].仪器仪表学报,2013,34(5):1107-1112.
[12] 白廷柱,侯喜报.基于SIFT算子的图像匹配算法研究[J].北京理工大学学报,2013,33(6):622-627.
[13] 于丽莉,戴青.一种改进的SIFT特征匹配算法[J].计算机工程,2011,37(2):210-212.
[14] 张宇,刘雨东,计钊.向量相似性测度方法[J].声学技术,2009,28(4):532-536.
[15] 杨世沛,陈杰,周莉,等.一种基于SIFT的图像特征匹配方法[J].电子测量技术,2014,37(6):50-53.

相似文献/References:

[1]寇为刚,谭等泰.基于EEMD和小波包分解在滚动轴承故障信息提取中的分析对比[J].工业仪表与自动化装置,2015,(04):101.
 KOU Weigang,TAN Dengtai.Analysis of extracting the fault information about rolling bearings based on EEMD and WPD[J].Industrial Instrumentation & Automation,2015,(02):101.
[2]韩 龙,等.基于EEMD和多元多尺度熵的风力发电机组滚动轴承故障特征提取[J].工业仪表与自动化装置,2016,(01):23.
 HAN Long,LI Chengwei,WANGli,et al.Feature extraction of rolling bearing for wind generator based on EEMD and Multivariate Multiscale Entropy[J].Industrial Instrumentation & Automation,2016,(02):23.
[3]何振红.基于离散 Curvelet变换和LS_SVM的虹膜特征提取与识别[J].工业仪表与自动化装置,2016,(01):68.
 HE Zhenhong.Feature extraction and recognition of iris based on discrete curvelet transform and LS_SVM[J].Industrial Instrumentation & Automation,2016,(02):68.
[4]苏 杨,卢 翔,李 琨,等.基于轻量深度学习网络的机房人物检测研究[J].工业仪表与自动化装置,2021,(01):100.[doi:10.3969/j.issn.1000-0682.2021.01.024]
 SU Yang,LU Xiang,LI Kun,et al.Research on computer room human detection based on lightweight deep learning network[J].Industrial Instrumentation & Automation,2021,(02):100.[doi:10.3969/j.issn.1000-0682.2021.01.024]

备注/Memo

备注/Memo:
收稿日期:2016-07-22
作者简介:单宝明(1974),男,山东东营人,硕士,副教授,硕士生导师,研究方向为嵌入式系统设计,智能控制技术。
更新日期/Last Update: 1900-01-01