参考文献/References:
[1] 周昊飞,刘玉敏.基于小波重构的动态过程LSSVM- BPNN在线智能监控模型[J].系统管理学报,2018,27(02): 291-298.[2] WU D, ZHANG J.Personnel intrusion detection in the complex environment of mine[C]//2018 International Conference on Sensor Networks and Signal Processing (SNSP), IEEE Computer Society, 2018:231 -235.?/div>
[3] 苑洋,黄迪,王蕴红.面向不同距离的实时人体检测与跟踪系统[J].模式识别与人工智能,2014,27(10):939-945.
[4] 金炳瑞.基于图像处理的铁路轨道异物入侵的自动识别研究[D].兰州:兰州交通大学,2016.
[5] 卢宏涛,张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理,2016,31(01):1-17.
[6] 李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(09):2508-2515.
[7] LECUN Y, BENGIO Y, HINYON G. Deep learning[J]. nature, 2015, 521(7553): 436.
[8] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J].Medical image analysis, 2017, 42: 60-88.
[9] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. 2017.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision (ECCV),2016, 2016:21-37.
[11] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning. Cambridge, USA: JMLR, 2015:448-456.
[12] ISLAM M A, AKHTER S, MURSALIN T E, et al. A suitable neural network to detect textile defect[C]//International Conference on Neural Information Processing. Springer, Berlin, Heidelberg, 2006: 430 -438.
[13] XIE Liang jun, HUANG Rui, GU Nong, et al. A novel defect detection and identification method in optical inspection [J].Neural Computing and Applications,2014,24(8): 1953-1962.
相似文献/References:
[1]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(01):75.
[2]徐先峰,黄刘洋,龚 美.基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测[J].工业仪表与自动化装置,2020,(01):13.
XU Xianfeng,HUANG Liuyang,GONG Mei.Short-term traffic flow prediction based on combined model of convolutional neural network and bidirectional long-term memory network[J].Industrial Instrumentation & Automation,2020,(01):13.
[3]张晓华,马 煜,杨晨辉,等.基于卷积神经网络的设备安装位置智能识别方法[J].工业仪表与自动化装置,2021,(01):13.[doi:1000-0682(2021)01-0000-00]
ZHANG Xiaohua,MA yu,YANG Chenhui,et al.Intelligent identification method of equipment installation position based on convolution neural network[J].Industrial Instrumentation & Automation,2021,(01):13.[doi:1000-0682(2021)01-0000-00]