参考文献/References:
[1] CORASANITI V F, BARBIERI M B, ARNERA P L. Compensation with hybrid active power filter in an industrial plant[J].IEEE Latin America Transactions,2013, 11(1): 447-454.[2] 罗安,章就,付青新.型注入式并联混合型有源电力滤波器[J].电工技术学报,2005,20(2):51-55.
[3] 王雪松,赵争鸣,袁立强,等.应用于大容量变换器的并联技术[J].电工技术学报,2012(10):155-162.
[4] 游小杰,李永东,等.并联型有源电力滤波器在非理想电源电压下的控制[J].中国电机工程学报,2004,24(2): 56-61.
[5] 卓放,胡军飞,王兆安.采用多重化主电路实现的大功率有源电力滤波器[J].电网技术,2000,24(8):5-7.
[6] 李红雨,吴隆辉,卓放,等.多重化大容量有源电力滤波器的主电路结构研究[J].电网技术,2000,23(28):12-16.
[7] VODYAKHO O,MI C C.Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems[J].IEEE Transactions on Power Electronics,2009, 24(5):1350-1363.
[8] 商少锋,陈识微,蒋鲁军.模块化并联型低压有源电力滤波装置的设计与工程应用[J].电网技术,2008,32(3):93-98.
[9] 吕振林.有源电力滤波器中的谐波检测[D].济南:山东大学, 2007.
[10] 陈娟,郑建勇,丁祖军,等. p-q-r法与FBD法在三相四线制系统谐波电流检测中的对比[J].电力自动化设备,2007, 27(11):30-33.
[11] 成剑,罗安,付青.简化DFT滑窗迭代算法在有源电力滤波器谐波检测中应用[J].电力自动化设备,2005(5): 57-60.?
[12] 高宇澄,赵伟,黄松岭.基于瞬时无功理论的单相无功功率相关定义[J].电测与仪表,2016(10):1-8.[13] 周君求,陈兰玉,周沛锋,等.同步参考坐惊法和正、巧序基波提取器巧电流检测中的比较[J].中南大学学报(自然科学版),2008,39(4):816-823.
[14] MIHAELA P,ALEXANDRU B,VLAD S.A DSP-based implementation of the p-q theory in active power filtering under nonideal voltage conditions[J].IEEE Transactions on Industrial Informatics.2013.9(2):880-889.
[15] 张宸宇,梅军,郑建勇,等.基于内置重复控制器改进无差拍的有源滤波器双滞环控制方法[J].电工技术学报,2015, 22(11): 124-132.
[16] 何英杰,刘进军,王兆安,等.基于重复预测原理的三电平APF无差拍控制方法[J].电工技术学报,2010,25(2): 114-120+133.
[17] VODYAKHO O,HACKSTEIN D,STEIMEL A,et al. Novel direct current-space-vector control for shunt active power filters based on the three-level inverter[J].IEEE Transactions on Power Electronics,2008,23(4):1668-1679.
[18] 王峰,张旭隆,何凤有,等.基于复合模型预测控制策略的三电平APF研究[J].电力系统保护与控制,2014(11): 79-85.
[19] HAN Y,XU L,KHAN M M,et al.Robust deadbeat control scheme for a hybrid APF with resetting filter and ADALINE-Based harmonic estimation algorithm[J].IEEE Transactions on Industrial Electronics,2011,58(9):3893- 3904.
[20] 唐诗颖,彭力,康勇,等.并联有源滤波器广义积分控制设计新方法习中国电机工程学报,2011,31(12):40-45.
[21] Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional- resonant controllers and filters for grid-connected voltage- source converters[J]. IEE Proceedings of Electric Power Applications, 2006,153(5): 750-762.
[22] ALVES DMB A,PEREZ VIEIRA P K,CABRAL D S E R. Application of the one-cycle control technique to a three- phase threelevel npc rectifier [J].IEEE Transactions on Industrial Applications,2014,50(2):1177-1184.
[23] JIAO Y,LEE F C,LU S.Space vector modulation for 3- level NPC converter with neutral point voltage balance and switching loss reduction[J].IEEE Transactions on Power Electronics,2013,99:1-12.
[24] 朱珠,宫玮丽,蔡涛,等.基于内模原理的MMC- STATCOM控制策略研究[J].控制工程,2016,(10): 1497-1503.
[25] YI T,POH C L,PENG W,et al.Generalized design of high performance shunt active power filter with output LCL filter[J].IEEE Transactions on Industrial Electronic,2009, 59(3):1443-1452.
[26] 唐诗颖,彭力,康勇,等.并联有源滤波器广义积分控制设计新方法[J].中国电机工程学报,2011,31(12):40-45.
[27] 鞠建永,陈敏,徐君,等.模块化并联有源电力滤波器[J].电机与控制学报,2008,12(1):20-26.
[28] 徐长波,鲁伟,李春文.大容量并联有源电力滤波器的模块化控制策略[J].电力系统自动化,2013,37(8):117-122.
[29] 鞠建永,陈敏,徐君,等.模块化并联有源电力滤波器[J].电机与控制学报,2008,12(1):20-26.
[30] 阚志忠,张纯江,薛海芬,等.微网中三相逆变器无互连线并联新型下垂控制策略[J].中国电机工程学报,2011, 31(33):68-74.
[31] Wang W,Zeng X,Tang X,et al. Analysis of micrgrid inverter droop controller with virtual output impedance under non-linear condition[J].IET Power Electron,2014, 7(6):1547-1556.
[32]Guan Yajuan,Wu Weiyang.An Improved Droop Controller for Grid-Connected Voltage Source Inverter in Microgrid[C].IEEE international symposium on power electronics for distributed generation systems,2010: 823-828.
[33] 陆哓楠,孙凯,黄立培,等.徼电网系统中并联滤波器谐振特性[J].清华大学学报(自然科学版),2012(52):1571- 1577.
[34] 许德志,汪飞,阮毅.LCL、LLCL和LLCCL滤波器无源阻尼分析[J].中国电机工程学报,2015,18(9): 4725-4735.
[35] 王要强,吴凤江,孙力.并网逆变器用LCL滤波器新型有源阻尼控制[J].电力自动化设备,2011,31(5):75-79.
[36] 许津铭,谢少军,肖华锋. LCL滤波器有源阻尼控制机制研究[J].中国电机工程学报,2012(9): 27-33+6.
相似文献/References:
[1]朱 丹,张 进.基于免疫粒子群优化算法的微电网谐波抑制策略[J].工业仪表与自动化装置,2019,(01):17.[doi:1000-0682(2019)01-0000-00]
ZHU Dan,ZHANG Jin.Micro grid harmonic suppression strategy based on immune particle swarm optimization algorithm[J].Industrial Instrumentation & Automation,2019,(05):17.[doi:1000-0682(2019)01-0000-00]