|本期目录/Table of Contents|

[1]郑昌庭,王 俊,郑 克.基于图像识别的变电站巡检机器人仪表识别研究[J].工业仪表与自动化装置,2020,(05):57-61.[doi:1000-0682(2020)05-0000-00]
 ZHENG Changting,WANG Jun,ZHENG Ke.Research on instrument recognition of substation inspection robot based on image recognition[J].Industrial Instrumentation & Automation,2020,(05):57-61.[doi:1000-0682(2020)05-0000-00]
点击复制

基于图像识别的变电站巡检机器人仪表识别研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年05期
页码:
57-61
栏目:
出版日期:
2020-10-15

文章信息/Info

Title:
Research on instrument recognition of substation inspection robot based on image recognition
作者:
郑昌庭王 俊郑 克
国网浙江省电力公司温州供电公司,浙江 温州 325000
Author(s):
ZHENG ChangtingWANG JunZHENG Ke
State Grid Zhejiang Electric Power Corporation Wenzhou Power Supply Company,Zhejiang Wenzhou 325000, China
关键词:
图像识别变电站机器人仪表识别脉冲耦合神经网络
Keywords:
image recognition substationrobot instrument identification PCNN-Pulse coupled neural network
分类号:
TP242.3
DOI:
1000-0682(2020)05-0000-00
文献标志码:
A
摘要:
目前变电站仪表识别方法易受到电信号干扰,导致识别图像中存在噪声。该文结合图像识别与中值滤波方法除去图像噪声,提高仪表识别准确性。根据图像识别预处理巡检机器人采集到的仪表图像;利用颜色图像区域搜索进行目标仪表图像区域定位,依据中值滤波去除目标图像噪声;采用脉冲耦合神经网络对仪表图像数字显示盘中的数字字符实行分割和二值化处理;通过样本匹配算法匹配仪表图像样本的数字字符,实现变电站仪表数据识别。通过实验表明,基于图像识别的方法可有效识别模糊以及缺失变电站巡检机器人仪表读数,且识别准确性高。
Abstract:
At present, the identification method of substation instrument is easy to be interfered by electrical signal, which leads to noise in the recognition image.Therefore, combining image recognition and median filter to remove image noise, improve the accuracy of instrument recognition.Instrument image collected by inspection robot based on image recognition preprocessing.Using color image region search to locate the image region of the target instrument, and using median filter to remove the noise of the target image.Using pulse coupled neural network to segment and binarize the digital characters in the digital display panel of instrument image.The digital character of the image sample of the instrument is matched by the sample matching algorithm to realize the data recognition of the instrument in the substation.It can be seen from the experiment that the method based on image recognition can effectively identify the fuzzy and missing readings of the inspection robot instrument in substation, and the recognition accuracy is high.

参考文献/References:

[1] 刘云鹏,裴少通,武建华,等.基于深度学习的输变电设备异常发热点红外图片目标检测方法[J].南方电网技术, 2019,13(02):27-33.

[2] 马啸川,李庆武,刘静,等.变电站机器人自动巡检中的刀闸开合状态分析[J].电子测量与仪器学报,2018,32(06): 64-71.
[3] 彭斌,祝志恒,阳军生,等.基于全景展开图像的隧道衬砌渗漏水数字化识别方法研究[J].现代隧道技术,2019, 56(03): 31-37+44.
[4] 邵嘉琦,曲长文,李健伟,等.基于CNN的不平衡SAR图像舰船目标识别[J].电光与控制,2019,26(09):90-97.
[5] 付文龙,谭佳文,吴喜春,等.基于图像处理与形态特征分析的智能变电站保护压板状态识别[J].电力自动化设备, 2019,39(07):203-207.
[6] 王建邦,袁智勇,陈波,等.变电站巡检机器人数据驱动无模型自适应控制[J].电测与仪表,2019,56(19):114-120.
[7] 梁林勋,杨俊杰,楼志斌.基于智能空间的变电站机器人复合全局定位系统设计[J].电测与仪表,2018,55(24): 100-105.
[8] 孙平安,祁俊,谭秋月.利用卷积神经网络改进迭代深度学习算法的图像识别方法研究[J].计算机应用研究, 2019,36(07):2223-2227.
[9] 郭敦,吴志军.基于局部字典块稀疏表示的SAR图像目标识别方法[J].中国电子科学研究院学报,2019,14(08): 813-817+829.?div>[10] 魏永乐,房立金.双臂巡检机器人沿输电线路行走特性研究[J].北京理工大学学报,2019,39(08):813-818.
[11] 杨林,马宏伟,王岩,等.煤矿巡检机器人同步定位与地图构建方法研究[J].工矿自动化,2019,45(09):18-24.
[12] 杨应彬,尹春丽,刘波,等.基于Hough变换与特征聚类的指针轮廓识别方法[J].机械设计与研究,2019,35(03):7-11.
[13] 桑浩楠,王石刚,梁庆华.户外变电站复杂环境下的移动操作机器人单目视觉定位[J].机械设计与研究,2019, 35(03): 1-6+11.
[14] 温秀兰,康传帅,宋爱国,等.基于全位姿测量优化的机器人精度研究[J].仪器仪表学报,2019,40(07):81-89.
[15] 徐晓苏,袁杰.基于改进强化学习的移动机器人路径规划方法[J].中国惯性技术学报,2019,27(03):314-320.

相似文献/References:

[1]殷培峰,张婧瑜.基于MCGS的变电站自动化监控系统设计[J].工业仪表与自动化装置,2014,(06):30.
 YIN Peifeng,ZHANG Jingyu.The design of the substation automation monitoring and control system based on MCGS[J].Industrial Instrumentation & Automation,2014,(05):30.
[2]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
 YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(05):75.
[3]陈 超.基于物联网技术的变电站辅助监测系统设计与应用[J].工业仪表与自动化装置,2017,(06):49.[doi:1000-0682(2017)06-0049-03]
 CHEN Chao.Design and application of auxiliary monitoring system for substation based on Internet of things[J].Industrial Instrumentation & Automation,2017,(05):49.[doi:1000-0682(2017)06-0049-03]
[4]邓清男,石晓龙*.变电站室内数显仪表的读数识别[J].工业仪表与自动化装置,2018,(02):86.[doi:1000-0682(2018)02-0000-00]
 DENG Qingnan,SHI Xiaolong*.Reading identification of indoor digital instrumentation in substation[J].Industrial Instrumentation & Automation,2018,(05):86.[doi:1000-0682(2018)02-0000-00]
[5]邓 科,陈 理,李 挺,等.基于循环风道设计的变电站户外箱柜智能驱潮装置研究[J].工业仪表与自动化装置,2020,(02):116.
 DENG Ke,CHEN Li,LI Ting,et al.Research on intelligent moisture driving device of outdoor cabinet in substation based on circulating air duct design[J].Industrial Instrumentation & Automation,2020,(05):116.
[6]赵寿生,周立辉,郭俊含,等.变电站智能电子设备信息模型与通信方案研究[J].工业仪表与自动化装置,2020,(04):132.[doi:1000-0682(2020)04-0000-00]
 ZHAO Shousheng,ZHOU Lihui,GUO Junhan,et al.Research on information model and communication scheme of intelligent electronic device in substation[J].Industrial Instrumentation & Automation,2020,(05):132.[doi:1000-0682(2020)04-0000-00]
[7]吕意飞,鲜 龙,文秀梅,等.变电站室内渗漏雨风险识别与实时告警装置的设计与应用[J].工业仪表与自动化装置,2020,(06):17.[doi:1000-0682(2020)06-0000-00]
 LYifei,XIAN Long,WEN Xiumei,et al.Design and application of risk identification and real-time warning device for indoor leakage rain in substation[J].Industrial Instrumentation & Automation,2020,(05):17.[doi:1000-0682(2020)06-0000-00]
[8]张晓华,马 煜,杨晨辉,等.基于卷积神经网络的设备安装位置智能识别方法[J].工业仪表与自动化装置,2021,(01):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
 ZHANG Xiaohua,MA yu,YANG Chenhui,et al.Intelligent identification method of equipment installation position based on convolution neural network[J].Industrial Instrumentation & Automation,2021,(05):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
[9]董 杰,刘文峰,乔法起,等.基于SVM的井下水仓淤泥识别系统的研究[J].工业仪表与自动化装置,2021,(05):112.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.024]
 DONG Jie,LIU Wenfeng,QIAO Faqi,et al.Research on sludge recognition system of underground water silo based on SVM[J].Industrial Instrumentation & Automation,2021,(05):112.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.024]
[10]刘 辉.基于RBF人工神经网络的变电站无功补偿装置自动化控制方法[J].工业仪表与自动化装置,2021,(06):34.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.007]
 LIU Hui.Automatic control method of reactive power compensation device in Substation based on RBF artificial neural network[J].Industrial Instrumentation & Automation,2021,(05):34.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.007]

备注/Memo

备注/Memo:
收稿日期:2020-04-23
作者简介:郑昌庭(1978),男,浙江温州市人,本科,工程师,研究方向为变电运维专业管理与研究方面。
更新日期/Last Update: 1900-01-01