|本期目录/Table of Contents|

[1]张小洁,白 蕾.基于LMS的三阶Volterra自适应滤波器的时间序列数据预测算法的研究[J].工业仪表与自动化装置,2023,(01):108-111+115.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.021]
 ZHANG Xiaojie,BAI Lei.Research on time series data prediction algorithm based on LMS third order Volterra adaptive filter[J].Industrial Instrumentation & Automation,2023,(01):108-111+115.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.021]
点击复制

基于LMS的三阶Volterra自适应滤波器的时间序列数据预测算法的研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年01期
页码:
108-111+115
栏目:
出版日期:
2023-02-15

文章信息/Info

Title:
Research on time series data prediction algorithm based on LMS third order Volterra adaptive filter
文章编号:
1000-0682(2023)01-0108-04
作者:
张小洁12白 蕾12
1.西部创新研究院;
2.陕西工业职业技术学院,陕西 咸阳 712000
Author(s):
ZHANG Xiaojie12BAI Lei12
1.Western Innovation Research Institute;
2.Shaanxi Polytechnic Institute, Shaanxi Xianyang 712000 , China
关键词:
时间序列数据VolterraLMS自适应
Keywords:
time series data Volterra LMS self-adaption
分类号:
TP181
DOI:
10.19950/j.cnki.cn61-1121/th.2023.01.021
文献标志码:
A
摘要:
为了确保工业复杂系统运行过程中的安全性和可靠性,对生产过程中的非线性数据进行预测分析成为一种有效手段。为了提高时间序列数据预测准确性,提出基于非线性归一化最小均方算法(LMS)的三阶Volterra自适应滤波器预测算法。首先针对时间序列数据的预测问题,利用有限项记忆单元的三阶Volterra级数对复杂系统运行数据进行预测。针对权重初始值会严重影响预测效果的问题,采用LMS自适应滤波算法对滤波器系数进行在线更新,对未来时刻的数据进行预测。最后利用联合循环发电厂数据对该预测算法进行实验,火电厂运行数据的预测值和实际观测值之间的误差很小,说明基于LMS的三阶Volterra自适应预测算法具有较好的预测效果,能够为实际的预测及控制提供有利的依据。
Abstract:
In order to ensure the safety and reliability of the industrial complex system in the process of operation, it has become an effective means to predict and analyze the nonlinear data in the production process. In order to improve the prediction accuracy of time series data, a third-order Volterra adaptive filter prediction algorithm based on nonlinear normalized least mean square (LMS) algorithm is proposed. Firstly, aiming at the prediction of time series data, the third-order Volterra series of finite term memory cell is used to predict the operation data of complex system. Aiming at the problem that the initial value of the weight will seriously affect the prediction effect, the LMS adaptive filter algorithm is used to update the filter coefficients online and predict the data at the future time. Finally, the prediction algorithm is tested with the data of thermal power plant. The error between the predicted value of the operation data of thermal power plant and the actual observation value is very small, which shows that the third-order Volterra adaptive prediction algorithm based on LMS has a good prediction effect and can provide a favorable basis for the actual prediction and control.

参考文献/References:

[1] WANG Xinglong, HE Min. Influential Node Ranking and Invulnerability of Air Traffic Cyber Physical System [J]. Transactions of Nanjing University of Aeronautics and Astronautics,2021, 38(2):288-297.

[2]朱菊香,张赵良,王玉芳,等.列车车厢空气质量检测与自动控制系统的研究[J].现代电子技术,2021,44(24):16-20.
[3]韩敏,马俊珠,任伟杰,等.基于核自适应滤波器的时间序列在线预测研究综述[J].自动化学报,2021,47(4):730-746.
[4]钱虹,江诚,潘岳凯,等.基于时间序列神经网络的蒸汽发生器传热管泄漏程度诊断研究[J]. 核动力工程, 2020, 41(2):160-167.
[5]王栋,张自强,高建勇,等.基于支持向量机的配电网全域大数据自动化预测模型设计[J]. 自动化技术与应用, 2021(5):114-118.
[6]芦泽阳,李树江,王向东.计及位置不确定的喷雾机喷杆系统仿形姿态渐近跟踪控制[J].应用数学和力学,2022, 43(2):1-10.
[7]徐传忠,王永初,杨冠鲁.模拟退火粒子群算法的Volterra主动噪声消除器[J]. 自动化与仪器仪表, 2010(3):116-117.
[8]张家树,肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器[J].物理学报,2001, 50(7):1248-1254.
[9]奚之飞,徐安,寇英信,等.基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报, 2020, 41(12):350-369.
[10]相赟,林崇,陈兵.自适应事件触发网络化非线性系统滤波器设计[J]. 控制理论与应用, 2021, 38(1):1-12.
[11]王启林.基于Volterra级数的结构非线性识别研究[D]. 大连理工大学, 2020.
[12]陈乐瑞,曹建福,胡河宇,等.一种基于Volterra频域核的非线性频谱智能表征方法[J].中南大学学报:自然科学版,2020,51(10):2867-2875.
[13]韩琛晔.基于多新息算法的阶次未知的Wiener系统参数估计[J].河南理工大学学报:自然科学版,2021, 40(1):118-124.
[14]韦保林,罗晓曙,王秉宏,等.一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法[J].物理学报,2002, 51(10):2205-2210.
[15] BAE H R, GRANDHI R V, CANFIELD R A. Epistemic uncertainty quantification techniques including evidence theory for large-scale structures[J]. Computers & Structures, 2004, 82(11): 1101-1112.
[16] PINAR Tüfekci.Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods[J]. International Journal of Electrical Power & Energy Systems, 2014, 60: 126-140.
[17] HEYSEM Kaya, P Tüfekci, FS Gürgen. Local and Global Learning Methods for Predicting Power of a Combined Gas & Steam Turbine[C]//Proceedings of Icetcee 2012, Dubai, March:24-25.
[18]赵雅利,王玉丰,纪静,等.基于LMS算法的配电网终端设备运行数据实时采集[J].电子设计工程,2022,30(18):189-193.

相似文献/References:

备注/Memo

备注/Memo:
投稿日期:2022-05-09
基金项目:
2022年陕西省自然科学基础研究计划(青年人才项目)(2022JQ-609);
陕西省教育厅自然科学专项(20JK0802);
陕西省自然科学基础研究计划(2022JM-388);
陕西工业职业技术学院校级重点项目(2022YKZD-002)
第一作者:
张小洁(1978),硕士,副教授,主要研究方向为智能制造与检测、数据挖掘技术。
更新日期/Last Update: 1900-01-01