|本期目录/Table of Contents|

[1]刘尔晨,刘天涯.基于小波神经网络的机器人模糊控制算法[J].工业仪表与自动化装置,2023,(04):84-88.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.015]
 LIU Erchen,LIU Tianya.Robot fuzzy control algorithm based on wavelet neural network[J].Industrial Instrumentation & Automation,2023,(04):84-88.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.015]
点击复制

基于小波神经网络的机器人模糊控制算法

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年04期
页码:
84-88
栏目:
出版日期:
2023-08-15

文章信息/Info

Title:
Robot fuzzy control algorithm based on wavelet neural network
文章编号:
1000-0682(2023)03-0084-05
作者:
刘尔晨刘天涯
江苏安全技术职业学院,江苏 徐州 221000
Author(s):
LIU Erchen LIU Tianya
Jiangsu College of Safety Technology, Xuzhou Jiangsu 221000, China
关键词:
小波分析神经网络机器人模糊控制二阶倒立摆变换域
Keywords:
wavelet analysis neural network robot fuzzy control second order inverted pendulum transformation domain
分类号:
TP311
DOI:
10.19950/j.cnki.cn61-1121/th.2023.04.015
文献标志码:
A
摘要:
为了提升工业制造过程中工业机器人机械臂的控制精度,文中基于变换域的思想设计了一套智能控制算法。该方法采用小波变换函数替代了传统神经网络隐藏层中的非线性激活函数,以获得紧密型的小波神经网络,从而提升了网络对于弱信号的特征提取能力。同时,将小波网络提取的特征输入至模糊控制网络中,并引入T-S推理规则,保证了算法对于复杂过程的辨识及控制能力。同时算法基于误差的反向传播理论进行训练,可以灵活调整学习率和迭代速度,确保了该过程的收敛性。以二阶倒立摆系统为控制对象进行仿真实验,根据不同变量对系统影响力的不同设计了两级控制网络,以增强网络的泛化能力。仿真结果表明,所提算法控制下的二阶倒立摆稳定性明显优于BP神经网络,其位移与上、下摆角等关键参数的方差分别提升了54.72%、56.32%和51.04%。
Abstract:
In order to improve the control accuracy of robots in industrial manufacturing process, a set of intelligent control algorithm is designed based on the idea of transformation domain. In this method, the wavelet transform function is used to replace the nonlinear activation function in the hidden layer of the traditional neural network, and a compact wavelet neural network is obtained, which improves the feature extraction ability of the network for weak signals. At the same time, the features extracted by wavelet network are input into the fuzzy control network, and T-S inference rules are introduced to ensure the identification and control ability of the algorithm for complex processes. The algorithm is trained based on the back propagation theory of error, which can flexibly adjust the learning rate and iteration speed of training, and ensure the convergence of the convergence process. The simulation experiment is carried out with the second-order inverted pendulum system as the control object. According to the different influence of different variables on the system, a two-level control network is designed, which improves the generalization ability of the network. The simulation results show that the stability of the second-order inverted pendulum under the control of the proposed algorithm is significantly better than that of the BP neural network, and the variance of its key parameters such as displacement, up swing angle and down swing angle are increased by 54.72%, 56.32% and 51.04% respectively.

参考文献/References:

[1]马兆冉,邵长冬,刘烨.基于深度残差算法的工业智能巡检机器人目标定位系统[J].电子设计工程,2022,30(14):115-118,123.

[2]胡琼琼,伞红军,陈久朋,等.一种四自由度并联机器人的运动性能分析及仿真[J].电子科技,2021,34(11):46-54.
[3]贾金明,宋焕生,梁浩翔,等.基于机器视觉的工业巡检过程监控分析系统[J].计算机系统应用,2021,30(2):70-76.
[4]李显,李歆,周晓锋,等.基于网络结构搜索的工业过程自动故障诊断方法[J].计算机应用研究,2022,39(3):807-813.
[5]郑亚红,于雪庭,马少华,等.变电站故障预警巡检机器人自主运动规划[J].沈阳工业大学学报,2021,43(1):6-11.
[6]郭婕,金海,沈昕格.基于神经网络PID算法的四旋翼无人机优化控制[J].电子科技,2021,34(10):51-55.
[7]张敏,彭红伟,颜晓玲.基于神经网络的模糊决策树改进算法[J].计算机工程与应用,2021,57(21):174-179.
[8]李晓璇,赵中华,童有为.一种基于神经网络的图像去雾算法[J].桂林航天工业学院学报,2022,27(3):308-314.
[9]常雨芳,张力,谢昊,等.采用小波分析和神经网络的短期风速组合预测[J].华侨大学学报(自然科学版),2019,40(4):556-560.
[10]武旭,王林森,彭岚,等.基于小波分析在霍尔传感器采集信号分析中的应用[J].工业控制计算机,2021,34(7):146-147,163.
[11]张昕昕,敬伟,王鹏,等.基于小波神经网络的高速自动机故障预测方法研究[J].国外电子测量技术,2020,39(8):11-16.
[12]韩健民,薛飞宇,梁双印,等.模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J].储能科学与技术,2022,11(7):2188-2196.
[13]吴贤宁,李哲,梁晓龙,等.基于模糊控制的无人机集群视觉着降[J].空军工程大学学报(自然科学版),2021,22(4):2-8.
[14]张涛,郑家琪,王福东,等.基于模糊控制的VSG转动惯量自适应算法[J].电力电子技术,2021,55(1):40-44.

相似文献/References:

[1]邹益民.基于SIMULINK-S函数的联合站脱水单神经元PID仿真[J].工业仪表与自动化装置,2014,(05):29.
 ZOU Yimin.Simulation of single neuron PID control for the union station crude oil dehydration process based on SIMULINK-S functions[J].Industrial Instrumentation & Automation,2014,(04):29.
[2]刘若涵,赵振民,赵 杰.基于神经网络与遗传算法的悬臂式掘进机智能控制系统[J].工业仪表与自动化装置,2014,(06):67.
 LIU Ruohan,ZHAO Zhenmin,ZHAO Jie.The boom-type roadheader intelligent control system based on neural network and genetic algorithms[J].Industrial Instrumentation & Automation,2014,(04):67.
[3]李战明,张晓东.小波分析中4种去噪方法的分析比较[J].工业仪表与自动化装置,2015,(02):12.
 LI Zhanming,ZHANG Xiaodong.The comparison of four kinds of methods of denoising based on wavelet analysis[J].Industrial Instrumentation & Automation,2015,(04):12.
[4]胥 良,贾宪生.基于神经网络的PID控制方法在矿井提升机中的应用[J].工业仪表与自动化装置,2015,(02):77.
 XU Liang,JIA Xiansheng.Based on neural network PID control methods in the study of the application of the mine hoist[J].Industrial Instrumentation & Automation,2015,(04):77.
[5]赵洪瑞,王洪远,朱素杰,等.基于RBF神经网络的镜头畸变校正方法[J].工业仪表与自动化装置,2015,(02):81.
 ZHAO Hongrui,WANG Hongyuan,ZHU Sujie,et al.The study of lens distortion correction based on radiate basis function neural networks[J].Industrial Instrumentation & Automation,2015,(04):81.
[6]陈宏希,邹益民.基于OPC的MATLAB与S7-200 PLC实时通信在过程控制实验装置中应用[J].工业仪表与自动化装置,2015,(05):55.
 CHEN Hongxi,ZOU Yimin.Research on application of real-time communication of MATLAB with S7-200 PLC in process control experimental device based on OPC[J].Industrial Instrumentation & Automation,2015,(04):55.
[7]刘 俊.基于搜寻者优化算法的PID神经网络解耦控制[J].工业仪表与自动化装置,2015,(05):97.
 LIU Jun.PID neural network decoupling control based on seeker optimization algorithm[J].Industrial Instrumentation & Automation,2015,(04):97.
[8]文 晖.基于小波分析的GM(1,1)模型在瓦斯浓度预测分析中的应用[J].工业仪表与自动化装置,2015,(06):63.
 WEN Hui.Application of GM(1,1) model based on wavelet analysis in gas concentration Prediction Analysis[J].Industrial Instrumentation & Automation,2015,(04):63.
[9]胥 良,郭 林,梁 亚,等.基于模糊RBF神经网络的智能PID控制[J].工业仪表与自动化装置,2015,(06):67.
 XU Liang,GUO Lin,LIANG Ya,et al.Study on intelligent PID control based on fuzzy RBF neural network[J].Industrial Instrumentation & Automation,2015,(04):67.
[10]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(04):21.

备注/Memo

备注/Memo:
收稿日期:2023-02-09

基金项目:
中国煤炭教育协会研究课题(ZMZC2022011)

第一作者:
刘尔晨(1988—),男,江苏徐州,本科,讲师,研究方向为机械工程。
更新日期/Last Update: 1900-01-01