|本期目录/Table of Contents|

[1]王毓婷,石云波,张 越,等.压阻式高g值加速度传感器温度补偿设计[J].工业仪表与自动化装置,2023,(04):3-7.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.001]
 WANG Yuting,SHI Yunbo,ZHANG Yue,et al.Temperature compensation design of piezoresistive high-g acceleration sensor[J].Industrial Instrumentation & Automation,2023,(04):3-7.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.001]
点击复制

压阻式高g值加速度传感器温度补偿设计

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年04期
页码:
3-7
栏目:
出版日期:
2023-08-15

文章信息/Info

Title:
Temperature compensation design of piezoresistive high-g acceleration sensor
文章编号:
1000-0682(2023)03-0003-05
作者:
王毓婷1石云波1张 越2冯登虎1栗文凯1马昊天1
1.中北大学 电子测试技术重点实验室,山西 太原 030051;
2.山西北方机械制造有限责任公司,山西 太原 030009
Author(s):
WANG Yuting1 SHI Yunbo1 ZHANG Yue2FENG Denghu1 LI Wenkai1 MA Haotian1
(1.Science and Technology on Test & Measurement Laboratory, North University of China, Shanxi Taiyuan 030051,China;
2.Shanxi North Machinery Manufacturing, Shanxi Taiyuan 030009,China)
关键词:
压阻传感器温度补偿片上多晶硅高g值加速度计MEMS
Keywords:
piezoresistive sensor temperature compensation On-chip polysilicon high-g accelerometer MEMS
分类号:
TP212
DOI:
10.19950/j.cnki.cn61-1121/th.2023.04.001
文献标志码:
A
摘要:
该文针对压阻式传感器在环境温度变化时会引起灵敏度非线性问题,提出了一种在惠斯通电桥中引入多晶硅的温度补偿方案。以单晶硅制备的高g值压阻式加速度计为模型,通过建立理论模型,分析了单晶硅压敏电阻的电阻率和压阻系数的温度特性。对传感器进行有限元仿真分析,仿真结果表明一阶频率为0.776 MHz,最大等效应力为44 MHz。通过对压敏电阻路径的线性分析,得到补偿前的灵敏度为0.349 ?V/g。对多晶硅电阻引入前后的输出电压进行理论分析,得到电阻系数比以及补偿前后传感器灵敏度随温度的变化关系。结果表明,补偿后的灵敏度漂移温度系数(Temperature Coefficient of Sensitivity drift, TCS)为6.8×10-4(1/℃),与补偿前相比降低了两个数量级。
Abstract:
In this paper, a temperature compensation scheme with the addition of polysilicon to the Wheatstone bridge is proposed to solve the problem of piezoresistive sensors’ sensitivity nonlinearity when the ambient temperature changes. Taking the high-g piezoresistive accelerometer fabricated in monocrystalline silicon as a model, and the temperature characteristics of the resistivity and piezoresistive coefficient of the monocrystalline silicon varistor are analyzed by establishing theoretical model. The finite element simulation analysis of the sensor shows that the first-order frequency is 0.776 MHz and the maximum equivalent stress is 44 MHz. The sensitivity before compensation is 0.349 ?V/g by linear analysis of the piezoresistive path. Theory analysis of the output voltage before and after the introduction of the polysilicon resistor is performed to acquire the resistivity coefficient ratio and the variation of the sensor sensitivity with temperature before and after compensation. The results show that the temperature coefficient of sensitivity drift ( TCS ) after compensation is 6.8 ×10-4 (1/°C ), which is two orders of magnitude lower than that before compensation.

参考文献/References:

[1] 瞿桢. 压阻式高g值加速度计理论及关键技术研究[D].重庆: 重庆邮电大学,2022.

[2]蒋金玲,张晶,朱欣华,等.硅微谐振式加速度计温度补偿方法研究综述[J].仪器仪表学报,2023,44(01):1-15.
[3]韩志康. 多层芯片键合工艺及键合界面可靠性研究[D].贵阳: 贵州大学,2020
[4]吴忠烨,杨尚书,吴国强.MEMS器件低应力封装技术[J].微纳电子与智能制造,2020,2(04):43-51.
[5]单宝琛. 硅压阻式压力传感器宽温补偿方法研究及系统设计[D].太原: 斜贝笱?2021.
[6]陈佳琦. 一种柔性压力传感器温度漂移补偿设计方法研究[D].南京: 东南大学,2019.
[7] R D, S G S. Performance Investigation of Carbon Nanotube Based Temperature Compensated Piezoresistive Pressure Sensor[J]. Silicon, 2022, 14(8): 3931-3938.
[8] TIAN B, SHANG H, WANG W. Research on temperature zero drift of SiC piezoresistive pressure sensor based on asymmetric wheatstone bridge[J]. Silicon, 2022, 14(10): 5445-5451.
[9] 李舜华, 聂泳忠, 李腾跃, 等. 片上温漂钩サ难棺枋窖沽π酒纳杓朴胫圃?J]. 传感技术学报, 2022, 35(4): 474-479.
[10] SINGH K, ALVI P A. Finite element an-alysis of polysilicon based MEMS temper-ature-pressure sensor[J]. Materials Today: Proceedings, 2020, 27: 280-283.
[11] 王天靖,梁庭,雷程,等.低热零点漂移的高温绝压压力传感器[J].仪表技术与传感器,2023(02):8-11+33.
[12] BELWANSHI V, TOPKAR A. Design optimization and simulation of a diamond based piezoresistive pressure sensor for high temperature application[J]. Materials Today: Proceedings, 2019, 18: 1017-1024.
[13] 张娟娟, 石云波, 赵锐,等. 基于多目标优化的高量程加速度传感器小型化设计[J].传感技术学报, 2021, 34(9):6.
[14]程亚昊,王志斌,王耀利,等.高速MEMS开关长时间实时监测系统设计[J].电子设计工程,2023,31(2):16-19.
[15] HUANG X. A theoretical calculation for carrier concentration and resistance prediction[J]. Physica Scripta, 2020, 95(6): 065228.
[16]杨文,靳鸿,杨春迪,等.压阻式加速度传感器温度补偿电路的设计[J].现代电子技术,2022,45(08):18-24.
[17] SAMRIDHISINGH K . Influence of the pressure range on temperature coefficient of resistivity (TCR) for polysilicon piezoresistive MEMS pressure sensor[J]. Physica Scripta,2020,95(7).

相似文献/References:

[1]毕文春.带有数字温度补偿硫化氢便携式测定器设计[J].工业仪表与自动化装置,2015,(04):92.
 BI Wenchun.With digital temperature compensation of hydrogen sulphide portable apparatus design[J].Industrial Instrumentation & Automation,2015,(04):92.
[2]江航成,牛立娜,邢静芳.电子式温度补偿膜式燃气表计量性能测试[J].工业仪表与自动化装置,2018,(04):107.[doi:1000-0682(2018)04-0000-00]
 JIANG Hang Cheng,NIU Li Na,XING Jing Fang.Metrological performance test for diaphragm gas meter with electronic temperature compensation[J].Industrial Instrumentation & Automation,2018,(04):107.[doi:1000-0682(2018)04-0000-00]
[3]王 琦,梁铎耀,孙竹梅,等.大型运输车超声波雷达防碰撞系统开发[J].工业仪表与自动化装置,2018,(06):57.[doi:1000-0682(2018)06-0000-00]
 WANG Qi,LIANG Duoyao,SUN Zhumei,et al.Development of ultrasonic radar anti-collision system for large transport vehicles[J].Industrial Instrumentation & Automation,2018,(04):57.[doi:1000-0682(2018)06-0000-00]
[4]刘国卫,王军涛,王 翔.一种光纤光栅渗压计的研制[J].工业仪表与自动化装置,2021,(01):114.[doi:10.3969/j.issn.1000-0682.2021.01.027]
 LIU Guowei,WANG Juntao,WANG Xiang.Research of a fiber bragg grating osmometer[J].Industrial Instrumentation & Automation,2021,(04):114.[doi:10.3969/j.issn.1000-0682.2021.01.027]
[5]魏丽君※,唐冬梅.静力水准仪测量精度的影响因素实验研究[J].工业仪表与自动化装置,2022,(06):3.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.001]
 WEI Lijun,Tang Dongmei.Experimental study on the factors affecting the measurement accuracy of static leveling instrument[J].Industrial Instrumentation & Automation,2022,(04):3.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.001]
[6]雷 磊*,赵颖博,杨大渭,等.一种面向复杂电力系统的GMM-FBG光学电流传感器设计[J].工业仪表与自动化装置,2022,(06):45.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.009]
 LEI Lei*,ZHAO Yingbo,YANG Dawei,et al.A GMM-FBG optical current sensor design for complex power systems[J].Industrial Instrumentation & Automation,2022,(04):45.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.009]

备注/Memo

备注/Memo:
收稿日期:2023-04-28

基金项目:
国家自然科学基金(52175524)

第一作者:
王毓婷(1997—)女,汉,山西吕梁人,硕士研究生,研究方向为MEMS加速度传感器设计、制备、测试等。通信作者:石云波,男,博士,教授,研究方向为MEMS、硬件电路、算法、微惯性器件等。
更新日期/Last Update: 1900-01-01