[1]凌永志,鲁纳纳,孙启涛等.风电机组主轴轴承故障的分析与预测[J].风能,2020(04):74-78.[2]党存禄,杜小波.粒子群优化变论域模糊PID控制在风电机组变桨距中的应用[J].工业仪表与自动化装置,2017(05):97-100.
[3]石志标,姜红阳. 基于IEM-FA优化LSSVM的风机主轴轴承故障诊断研究[J]. 组合机床与自动化加工技术,2019(1):90-93.
[4]张博,程珩.倒频谱在直驱风机主轴轴承故障诊断中的应用[J].机械设计与制造,2014(07):265-267.
[5]王振亚,伍星,刘韬,等.奇异谱分解联合互信息的主轴轴承故障特征提取研究[J].振动与冲击,2023,42(15):23-30+47.
[6]王春梅.基于深度置信网络的风电机组主轴承故障诊断方法研究[J].自动化仪表,2018,39(05):33-37.
[7]王桂兰,赵洪山,米增强.XGBoost算法在风机主轴承故障预测中的应用[J].电力自动化设备,2019,39(01):73-77+83.?/div>
[8]CHEN S, GUO L, FAN J, et al. Bandwidthaware adaptive chirp mode decomposition for railway bearing fault diagnosis[J]. Structural Health Monitoring, 2023: 14759217231174699.
[9]ALMONACID B, SOTO R. Andean condor algorithm for cell formation problems[J]. Natural Computing, 2019, 18: 351-381.
[10]CICONE A, LIU J, ZHOU H. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis[J]. Applied and Computational Harmonic Analysis, 2016, 41(2): 384411.
[11]LIU Y, YUAN D, GONG Z, et al. Adaptive spectral trend based optimized EWT for monitoring the parameters of multiple power quality disturbances[J]. International Journal of Electrical Power & Energy Systems, 2023, 146: 108797.
[12]李华,伍星,刘韬,等.基于信息熵优化变分模态分解的滚动轴承故障特征提取[J].振动与冲击,2018,37(23).
[13]JACEK D. Diagnosing of rollingelement bearings using amplitude levelbased decomposition of machine vibration signal[J]. Measurement,2018,126:413153.
[14]LI C, LIU Y, LIAO Y, et al. A VME method based on the convergent tendency of VMD and its application in multifault diagnosis of rolling bearings[J]. Measurement, 2022, 198: 111360.
[15]王建国,刘冀韬,张文兴.自适应MCKD和VMD在行星齿轮箱早期故障诊断中的应用[J].机械设计与制造,2022,(6):130-133.