[1] 胡梦婷, 罗晨. 基于MCNN-LSTM和交叉熵损失函数的轴承故障诊断[J]. 制造技术与机床, 2024: 1–9.
[2] 王婧, 许志伟, 刘文静, 等. 滚动轴承健康智能监测和故障诊断机制研究综述[J]. 计算机科学与探索, 2024, 18(4): 878–898.
[3] He J, Li X, Chen Y, et al. Deep Transfer Learning Method Based on 1D-CNN for Bearing Fault Diagnosis[J]. Shock and Vibration, 2021, 2021: 1–16.
[4] Lei J, Liu C, Jiang D. Fault diagnosis of wind turbine based on Long Short-term memory networks[J]. Renewable Energy, 2019, 133: 422–432.
[5] 李聪, 丁强, 刘亚祥, 等. 结合LSTM与1DCNN的冷水机组故障诊断方法研究[J]. 建筑科学, 2024, 40(6): 146–154+208.
[6] 徐行, 李军星, 贾现召, 等. 基于1DCNN-BiLSTM的端到端滚动轴承故障诊断方法[J]. 机床与液压, 2024, 52(11): 211–218.
[7] 景斯桐, 吴东升. 基于LSTM-CNN的双路径滚动轴承故障诊断[J]. 沈阳理工大学学报, 2024, 43(1): 44–49.
[8] 付雅婷, 温世明, 杨辉, 等. 基于多通道输入和1DCNN-LSTM的道岔转辙机故障诊断[J]. 铁道学报, 2023, 45(11): 98–106.
[9] 宋春生, 梁亚茹, 鲁妮芳, 等. 基于SAVMD与CNN结合的轴承故障诊断方法[J]. 机械强度, 2024, 46(3): 509–517.?
[11] 张鑫宇, 付强, 黄倩, 等. 基于CWT-CNN的离心泵轴承故障识别方法[J]. 机床与液压, 2024, 52(12): 202–207.
[12] 曹景胜,于洋,王琦, 等. 基于优化VMD-CNN-BiLSTM的电机轴承智能故障诊断研究[J]. 现代电子技术, 2024, 47(12): 115–121.
[1]张海静,姚博彬*,武奇生.基于差分数据图和深度学习的短时交通流预测[J].工业仪表与自动化装置,2020,(02):3.
ZHANG Haijing,YAO Bobin,WU Qisheng.Short-term traffic flow prediction based on the differential data graph and deep learning[J].Industrial Instrumentation & Automation,2020,(02):3.
[2]张晓华,马 煜,杨晨辉,等.基于卷积神经网络的设备安装位置智能识别方法[J].工业仪表与自动化装置,2021,(01):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
ZHANG Xiaohua,MA yu,YANG Chenhui,et al.Intelligent identification method of equipment installation position based on convolution neural network[J].Industrial Instrumentation & Automation,2021,(02):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
[3]牟海维,段朝辉*,李 林,等.基于边缘特征和CNN联合的多视航拍图像配准方法[J].工业仪表与自动化装置,2021,(04):87.[doi:10.19950/j.cnki.cn61-1121/th.2021.04.018]
MU Haiwei,DUAN Chaohui*,LI Lin,et al.Multi-view aerial image registration method based on edge feature and CNN[J].Industrial Instrumentation & Automation,2021,(02):87.[doi:10.19950/j.cnki.cn61-1121/th.2021.04.018]
[4]甘 李,姚 智,李 闯,等.基于卷积神经网络的汽轮机抗燃油泄漏智能预警技术研究[J].工业仪表与自动化装置,2022,(04):8.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.002]
GAN Li,YAO Zhi,LI Chuang,et al.Research on intelligent early warning technology of steam turbine anti fuel leakage based on convolutional neural network[J].Industrial Instrumentation & Automation,2022,(02):8.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.002]
[5]李 娜,曹丽明.一种风力发电机轴承故障智能诊断方法[J].工业仪表与自动化装置,2022,(05):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]
LI Na,CAO Liming.An intelligent diagnosis method for wind turbine bearing fault[J].Industrial Instrumentation & Automation,2022,(02):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]
[6]王志波,王继柱.基于光纤光栅传感技术和卷积神经网络的铁路信号调节方法研究[J].工业仪表与自动化装置,2023,(01):91.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.018]
WANG Zhibo,WANG Jizhu.Research on railway signal regulation based on fiber grating sensing technology and convolutional neural network[J].Industrial Instrumentation & Automation,2023,(02):91.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.018]
[7]徐晓强,丁 峰,毕淑敏.基于高速通信的港口设备远程检测与控制技术研究[J].工业仪表与自动化装置,2024,(05):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]
XU Xiaoqiang,DING Feng,BI Shumin.Design of remote detection and control technology for port equipment based on high-speed mobile communication[J].Industrial Instrumentation & Automation,2024,(02):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]