|本期目录/Table of Contents|

[1]鲍 蓉.GM(1,1)和线性回归模型及其在印刷包衬压缩变形数据预测中的应用[J].工业仪表与自动化装置,2014,(05):59-62.
 BAO Rong.GM (1,1) and linear regression model and its applicationin data prediction in printing lining deformation[J].Industrial Instrumentation & Automation,2014,(05):59-62.
点击复制

GM(1,1)和线性回归模型及其在印刷包衬压缩变形数据预测中的应用(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2014年05期
页码:
59-62
栏目:
出版日期:
2014-10-15

文章信息/Info

Title:
GM (1,1) and linear regression model and its applicationin data prediction in printing lining deformation
作者:
鲍 蓉
(兰州石化职业技术学院 印刷出版工程系,兰州 730060)
Author(s):
BAO Rong
(Publishing and Printingengineering Department ,Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060,China?)
关键词:
线性回归GM(11)模型预测印刷包衬压缩变形压缩变形量
Keywords:
linear regression GM (11) model prediction printed lining compression deformation compression deformation
分类号:
O212
DOI:
-
文献标志码:
A
摘要:
运用线性回归对预测数据进行分析,剔除异常数据,用GM(1,1)模型进行预测,有效降低了数据相对误差,提高了预测数据的精度。选用印刷包衬压缩变形的压缩变形量λ值,用线性回归进行数据分析并剔除异常数据后用GM(1,1)进行预测,使得预测数据具有更高的准确性和适应性。实验及仿真结果表明,经过前期数据分析整理后的灰色预测模型,其预测期望值远优于单纯的回归模型和GM(1,1)模型。
Abstract:
In this paper, by using the linear regression in analysis of the predicted data, eliminating abnormal data, using GM (1,1) model to predict, data relative error is reduced and forecast accuracy of data is improved. Selecting compression deformation value of printing lining compression deformation, the data was analyzed with linear regression and abnormal data eliminated to forecast by GM (1,1) to make sure the predicted data with higher accuracy and adaptability. The experimental and simulation results indicate that, after preliminary data analysis, the predicted expection value of grey forecasting model is much better than that of pure regression model and GM (1,1) model.

参考文献/References:

[1] 唐焕文.数学模型引论[M].北京:高等教育出版社,2005: 206-209.
[2] 彭放.数学建模方法[M].武汉:科学出版社,2007:187-189.
[3] 王江荣.基于灰色GM(1,1)和自适应神经模糊推理的数据预测模型[J].计量技术,2011(10):7-10.
[4] 冯瑞乾.印刷原理及工艺[M].河北:印刷工业出版社, 2012:33-41.

相似文献/References:

[1]贺 剑.基于改进的灰色理论在中长期电力负荷预测中的应用[J].工业仪表与自动化装置,2014,(05):100.
 HE Jian.Prediction model for medium and long term electric load based on improved grey theory[J].Industrial Instrumentation & Automation,2014,(05):100.
[2]曲 芳,明向兰.基于回归分析法的黑龙江省人口预测及应用[J].工业仪表与自动化装置,2015,(03):66.
 QU Fang,MING Xianglan.Based on regression analysis method of Heilongjiang province population forecast and application[J].Industrial Instrumentation & Automation,2015,(05):66.
[3]韩 艳.小波预处理的加权灰色线性回归组合模型及应用[J].工业仪表与自动化装置,2016,(06):18.
 HAN Yan.Weighted grey linear regression combined model and its application based on wavelet pretreatment[J].Industrial Instrumentation & Automation,2016,(05):18.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 1900-01-01