|本期目录/Table of Contents|

[1]刘若涵,赵振民,赵 杰.基于神经网络与遗传算法的悬臂式掘进机智能控制系统[J].工业仪表与自动化装置,2014,(06):67-69.
 LIU Ruohan,ZHAO Zhenmin,ZHAO Jie.The boom-type roadheader intelligent control system based on neural network and genetic algorithms[J].Industrial Instrumentation & Automation,2014,(06):67-69.
点击复制

基于神经网络与遗传算法的悬臂式掘进机智能控制系统(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2014年06期
页码:
67-69
栏目:
出版日期:
2014-12-15

文章信息/Info

Title:
The boom-type roadheader intelligent control system based on neural network and genetic algorithms
作者:
刘若涵赵振民赵 杰
(黑龙江科技大学 电气与控制工程学院,哈尔滨 150022)
Author(s):
LIU Ruohan ZHAO Zhenmin ZHAO Jie
(Institute of Electrical and Control Engineering, Heilongjiang University of Science and Technology,Harbin 150022 China)
关键词:
神经网络遗传算法悬臂式掘进机智能控制
Keywords:
artificial neural network genetic algorithms boom-type roadheader intelligent control
分类号:
TP273
DOI:
-
文献标志码:
A
摘要:
由于煤矿巷道内煤层的分布是不均匀的,并且是时时变化的,这就给高效开采带来了难度。悬臂式掘进机在巷道中作业时,会因为煤层分布的不确定性,导致所受的截割阻力不停地变化,因此,要求掘进机可以根据不同的工况,能够快速地、实时地调整悬臂的摆动速度。该文提出了基于神经网络与遗传算法的复合控制理论的悬臂式掘进机的控制模式。该控制系统能有效地提高生产效率,并且安全可靠。
Abstract:
Since the distribution of the coal seams is uneven and continual variation, it brings difficulty to excavate efficiently. When boom - type roadheader is working in the tunnel, because of the uncertainty of the distribution of coal seams, cutting resistance suffered by roadheader is changing constantly. So the roadheader should adjust boom swing speed quickly and in real time according to different conditions. This paper presents a composite control mode, that is a control theory of boom - type roadheader based on neural network and genetic algorithms, which can improve production efficiency effectively , and safety and reliability.

参考文献/References:

[1] 汪胜陆,孟国营,田劼,等.悬臂式掘进机的发展状况及趋势[J].煤矿机械,2007,28(6):1-3.[2] 刘建功,吴淼,魏景生,等.悬臂式掘进机自动截割控制关键技术[J].中国煤炭,2008,34(12):54-57.[3] 王慧,张笑,赵迪.基于PLC的掘进机恒功率变频调速系统仿真分析[J].电子测量与仪器学报,2013,27(10):951-956.[4] 李晓豁,吴志强.基于参数自适应模糊PID控制器的掘进机恒功率调速系统[J].制造业自动化,2009,31(1):45-47.[5] 许力.智能控制与智能系统[M].北京:机械工业出版社,2006.

相似文献/References:

[1]邹益民.基于SIMULINK-S函数的联合站脱水单神经元PID仿真[J].工业仪表与自动化装置,2014,(05):29.
 ZOU Yimin.Simulation of single neuron PID control for the union station crude oil dehydration process based on SIMULINK-S functions[J].Industrial Instrumentation & Automation,2014,(06):29.
[2]胥 良,贾宪生.基于神经网络的PID控制方法在矿井提升机中的应用[J].工业仪表与自动化装置,2015,(02):77.
 XU Liang,JIA Xiansheng.Based on neural network PID control methods in the study of the application of the mine hoist[J].Industrial Instrumentation & Automation,2015,(06):77.
[3]赵洪瑞,王洪远,朱素杰,等.基于RBF神经网络的镜头畸变校正方法[J].工业仪表与自动化装置,2015,(02):81.
 ZHAO Hongrui,WANG Hongyuan,ZHU Sujie,et al.The study of lens distortion correction based on radiate basis function neural networks[J].Industrial Instrumentation & Automation,2015,(06):81.
[4]陈宏希,邹益民.基于OPC的MATLAB与S7-200 PLC实时通信在过程控制实验装置中应用[J].工业仪表与自动化装置,2015,(05):55.
 CHEN Hongxi,ZOU Yimin.Research on application of real-time communication of MATLAB with S7-200 PLC in process control experimental device based on OPC[J].Industrial Instrumentation & Automation,2015,(06):55.
[5]刘 俊.基于搜寻者优化算法的PID神经网络解耦控制[J].工业仪表与自动化装置,2015,(05):97.
 LIU Jun.PID neural network decoupling control based on seeker optimization algorithm[J].Industrial Instrumentation & Automation,2015,(06):97.
[6]胥 良,郭 林,梁 亚,等.基于模糊RBF神经网络的智能PID控制[J].工业仪表与自动化装置,2015,(06):67.
 XU Liang,GUO Lin,LIANG Ya,et al.Study on intelligent PID control based on fuzzy RBF neural network[J].Industrial Instrumentation & Automation,2015,(06):67.
[7]梁书立,冯渭春.空间机械手模型参数在轨标定方法研究[J].工业仪表与自动化装置,2017,(02):3.
 LIANG Shuli,FENG Weichun.Research on the on-orbit calibration of space manipulator model parameter[J].Industrial Instrumentation & Automation,2017,(06):3.
[8]李 珣,刘 瑶,周 健,等.基于改进遗传算法的交通信号配时优化模型[J].工业仪表与自动化装置,2017,(04):125.
 LI Xun,LIU Yao,ZHOU Jian,et al.An optimization model of traffic signal cooperative timing based on improved GA[J].Industrial Instrumentation & Automation,2017,(06):125.
[9]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(06):21.
[10]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
 YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(06):75.
[11]王凯雄.基于遗传改进神经网络的煤矿井下传感器非线性校正方法[J].工业仪表与自动化装置,2024,(04):114.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]
 WANG Kaixiong.A nonlinear correction method for coal mine underground sensors based on genetic improved neural network[J].Industrial Instrumentation & Automation,2024,(06):114.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 1900-01-01