[1] 汪胜陆,孟国营,田劼,等.悬臂式掘进机的发展状况及趋势[J].煤矿机械,2007,28(6):1-3.[2] 刘建功,吴淼,魏景生,等.悬臂式掘进机自动截割控制关键技术[J].中国煤炭,2008,34(12):54-57.[3] 王慧,张笑,赵迪.基于PLC的掘进机恒功率变频调速系统仿真分析[J].电子测量与仪器学报,2013,27(10):951-956.[4] 李晓豁,吴志强.基于参数自适应模糊PID控制器的掘进机恒功率调速系统[J].制造业自动化,2009,31(1):45-47.[5] 许力.智能控制与智能系统[M].北京:机械工业出版社,2006.
[1]邹益民.基于SIMULINK-S函数的联合站脱水单神经元PID仿真[J].工业仪表与自动化装置,2014,(05):29.
ZOU Yimin.Simulation of single neuron PID control for the union station crude oil dehydration process based on SIMULINK-S functions[J].Industrial Instrumentation & Automation,2014,(06):29.
[2]胥 良,贾宪生.基于神经网络的PID控制方法在矿井提升机中的应用[J].工业仪表与自动化装置,2015,(02):77.
XU Liang,JIA Xiansheng.Based on neural network PID control methods in the study of the application of the mine hoist[J].Industrial Instrumentation & Automation,2015,(06):77.
[3]赵洪瑞,王洪远,朱素杰,等.基于RBF神经网络的镜头畸变校正方法[J].工业仪表与自动化装置,2015,(02):81.
ZHAO Hongrui,WANG Hongyuan,ZHU Sujie,et al.The study of lens distortion correction based on radiate basis function neural networks[J].Industrial Instrumentation & Automation,2015,(06):81.
[4]陈宏希,邹益民.基于OPC的MATLAB与S7-200 PLC实时通信在过程控制实验装置中应用[J].工业仪表与自动化装置,2015,(05):55.
CHEN Hongxi,ZOU Yimin.Research on application of real-time communication of MATLAB with S7-200 PLC in process control experimental device based on OPC[J].Industrial Instrumentation & Automation,2015,(06):55.
[5]刘 俊.基于搜寻者优化算法的PID神经网络解耦控制[J].工业仪表与自动化装置,2015,(05):97.
LIU Jun.PID neural network decoupling control based on seeker optimization algorithm[J].Industrial Instrumentation & Automation,2015,(06):97.
[6]胥 良,郭 林,梁 亚,等.基于模糊RBF神经网络的智能PID控制[J].工业仪表与自动化装置,2015,(06):67.
XU Liang,GUO Lin,LIANG Ya,et al.Study on intelligent PID control based on fuzzy RBF neural network[J].Industrial Instrumentation & Automation,2015,(06):67.
[7]梁书立,冯渭春.空间机械手模型参数在轨标定方法研究[J].工业仪表与自动化装置,2017,(02):3.
LIANG Shuli,FENG Weichun.Research on the on-orbit calibration of space manipulator model parameter[J].Industrial Instrumentation & Automation,2017,(06):3.
[8]李 珣,刘 瑶,周 健,等.基于改进遗传算法的交通信号配时优化模型[J].工业仪表与自动化装置,2017,(04):125.
LI Xun,LIU Yao,ZHOU Jian,et al.An optimization model of traffic signal cooperative timing based on improved GA[J].Industrial Instrumentation & Automation,2017,(06):125.
[9]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(06):21.
[10]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(06):75.
[11]王凯雄.基于遗传改进神经网络的煤矿井下传感器非线性校正方法[J].工业仪表与自动化装置,2024,(04):114.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]
WANG Kaixiong.A nonlinear correction method for coal mine underground sensors based on genetic improved neural network[J].Industrial Instrumentation & Automation,2024,(06):114.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]