|本期目录/Table of Contents|

[1]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94-97.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(03):94-97.
点击复制

基于改进的BP神经网络的柴油发动机故障诊断(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年03期
页码:
94-97
栏目:
出版日期:
2015-06-15

文章信息/Info

Title:
Research of diesel engine fault based on improved BP neural network
文章编号:
1000-0682(2015)03-0000-00
作者:
巴寅亮12王书提12谢 鑫12
(1. 新疆农业大学 机械交通学院;2. 新疆农业工程装备创新设计重点实验室,乌鲁木齐 830052)
Author(s):
BA Yinliang12WANG Shuti12 XIE Xin12
(1. College of Mechanic and Traffic, Xinjiang Agricultural University;2. Key Laboratory for Agricultural Engineering Equipment Innovative Design of Xinjiang, Urumqi 830052,China)
关键词:
柴油发动机高压共轨BP神经网络LM算法电控系统故障诊断
Keywords:
diesel engine high pressure common rail improved BP neural network LM algorithm electronic controlled system fault diagnosis
分类号:
TK428;TP183
DOI:
-
文献标志码:
A
摘要:
柴油发动机采用高压共轨燃油喷射技术,提高了柴油机的综合性能,但高压共轨柴油机电控系统比较复杂,增大了柴油机故障诊断的难度性。介绍了BP神经网路及LM算法,并利用改进的BP神经网络对发动机电控系统故障进行诊断研究。以长城哈佛GW2.8TC发动机为实验对象,让发动机在怠速状态下,对发动机进行故障设置,利用金德KT600故障诊断仪采集发动机的故障数据流,运用改进的BP神经网络建立诊断模型,诊断结果表明改进的BP神经网络的收敛速度快,运用改进的BP网路诊断柴油机电控系统故障是行之有效的。
Abstract:
Diesel engine with high pressure common rail fuel injection technology, improves the comprehensive performance of diesel engine, but the high pressure common rail diesel engine electronic controlled system is more complex, increasing the difficulty of diesel engine fault diagnosis. Introducing the BP Neural Network and LM algorithm, and carrying on the research on fault diagnosis of engine electronic controlled system based on improved BP Neural Network. Taking the Great Wall Harvard GW2.8TC engine as the experimental object, keeping the engine at idle speed condition, setting up some ?fault assumption for the engine, collecting the failure data flow of the engine by kinder KT600 fault diagnosis instrument, using improved BP Neural Network to establish diagnosis model, the diagnosis results show that the convergence rate of improved BP Neural Network is quickly, it is effective to diagnose electronic controlled system fault of diesel engine by improved BP Neural Network.

参考文献/References:

[1] 周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
[2] 张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
[3] 孙祥,徐流美,吴清.MATLAB 7.0[M].北京:清华大学出版社,2005.
[4] 董长虹.神经网络与应用[M].北京:国防工业出版社,2005.
[5] 史忠植.神经网络[M].北京:高等教育出版社,2009.
[6] 康健,左宪章,吴彩华,等.基于神经网络的柴油发动机故障预测研究[J].计算机测量与控制,2006(8):987-989.
[7] 李友才,巴寅亮.基于BP神经网络的电控发动机故障诊断应用研究[J].郑州轻工业学院报:自然科学报, 2008(10): 104-107.
[8] 孙帆,施学勤.基于MATLAB的BP神经网络设计[J].计算机与数字控制,2007(8):124-126.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 1900-01-01