|本期目录/Table of Contents|

[1]崔丽洁,程换新,宋生建.基于改进PSO算法的模糊神经网络的研究与应用[J].工业仪表与自动化装置,2018,(05):24-28.[doi:1000-0682(2018)05-0000-00]
 CUI Lijie,CHENG Huanxin,SONG Shengjian.Research and application of fuzzy neural network based on improved PSO algorithm[J].Industrial Instrumentation & Automation,2018,(05):24-28.[doi:1000-0682(2018)05-0000-00]
点击复制

基于改进PSO算法的模糊神经网络的研究与应用

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2018年05期
页码:
24-28
栏目:
出版日期:
2018-10-15

文章信息/Info

Title:
Research and application of fuzzy neural network based on improved PSO algorithm
作者:
崔丽洁程换新宋生建
青岛科技大学 自动化与电子工程学院,山东 青岛 266042
Author(s):
CUI Lijie CHENG HuanxinSONG Shengjian
College of Automation and Electrical Engineering, Qingdao University of Science and Technology, Shandong Qingdao 266042, China
关键词:
模糊神经网络粒子群算法惯性权重水质评价
Keywords:
fuzzy neural network partical swarm optimization inertia weight water quality evaluation
分类号:
TP391.41
DOI:
1000-0682(2018)05-0000-00
文献标志码:
A
摘要:
典型的模糊神经网络在处理复杂的多优化问题时存在收敛速度慢、易陷入局部极值等缺点。粒子群算法是一种全局优化的群体迭代算法,能有效克服传统模糊神经网络算法的不足。该文对粒子群算法的惯性权重及学习因子进行了改进,用其优化模糊神经网络模型参数,并将该模型应用到水质评价中以测试算法性能。通过与传统模糊神经网络的仿真结果比较,该模型精度更高,在水质评价过程中的应用效果更好。
Abstract:
For the complex multi optimization problems, the traditional fuzzy neural network has the disadvantages of slow convergence speed and easy to fall into the local extremum.Particle swarm optimization is a group iterative algorithm,which can effectively overcome the shortcomings of fuzzy neural network.In this paper,the inertia weight and learning factor of particle swarm optimization are improved.The improved particle swarm optimization algorithm is used to optimize the parameters of the fuzzy neural network model,and the model is applied to the water quality evaluation to test algorithm performance.The simulation results show that the model is better than the traditional fuzzy neural network and has higher efficiency in the process of water quality evaluation.

参考文献/References:

[1] 张彩云.基于改进PSO算法的模糊神经网络研究[D].哈尔滨:哈尔滨理工大学,2014:1-2.

[2] 王维博.粒子群优化算法研究及其应用[D].成都:西南交通大学,2012:16-19.
[3] 徐鹤鸣.多目标粒子群优化算法的研究[D].上海:上海交通大学,2013:1-6.
[4] 满春涛.粒子群算法研究及其在过程控制系统稳态优化中的应用[D].哈尔滨:哈尔滨理工大学, 2009: 32-88.
[5] 王春暖,李文卿,吴庆朝.基于改进PSO优化模糊神经网络的数控机床故障诊断技术研究[J].机床与液压,2016, 44(3):193-195.
[6] Van den Bergh F, Engelbrent A P. A new locally convergent particle swarm optimizer[C].Hammamet, Tunisia:Proceedings of IEEE Conference on Systems,Man, and Cybernetics,2009:96-101.
[7] 程卫民,张庆友.基于神经元网络的巷道风流温湿度预测法[J].煤炭工程师,1998(03):35-36.
[8] Lin L, Guo F, Xie X, et al. Novel adaptive hybrid rulenetwork based on TS fuzzy rules using an improved quantum-behaved particle swarm optimization[J]. Neu-rocomputing,2015,149:1003-1013.
[9] 李茜,张建辉,林兰钰等.水环境质量评价方法综述[J].现代农业科技,2011(19):64-67.

相似文献/References:

[1]毛璐明,杨玉群.考虑负荷重要性的微电网电源容量优化配置[J].工业仪表与自动化装置,2016,(06):62.
 MAO Luming,YANG Yuqun.Micro-grid generation capacity optimization with consideration of load importance[J].Industrial Instrumentation & Automation,2016,(05):62.
[2]程换新,张义民,刘军亮,等.基于DEBP模糊神经网络的醇烯比值控制研究[J].工业仪表与自动化装置,2019,(01):72.[doi:1000-0682(2019)01-0000-00]
 CHENG Huanxin,ZHANG Yimin,LIU Junliang,et al.Studies on alcohol alkene ratio control based on DEBP fuzzy neural network[J].Industrial Instrumentation & Automation,2019,(05):72.[doi:1000-0682(2019)01-0000-00]
[3]高敬更,李 项,张勇红,等.基于PSO算法的电动汽车电能计量优化[J].工业仪表与自动化装置,2019,(02):49.[doi:1000-0682(2019)02-0000-00]
 GAO Jinggeng,LI Xiang,ZHANG Yonghong,et al.An electric vehicle energy metering optimization based on particle swarm optimization[J].Industrial Instrumentation & Automation,2019,(05):49.[doi:1000-0682(2019)02-0000-00]
[4]吴 君,张雨飞,肖 晓.基于改进粒子群算法的隐式广义预测控制[J].工业仪表与自动化装置,2020,(01):8.
 WU Jun,ZHANG Yufei,XIAO Xiao.Implicit generalized predictive control based on improved particle swarm optimization[J].Industrial Instrumentation & Automation,2020,(05):8.
[5]赵 勇,史亚斌,何军红,等.基于Pareto改进的混合算法求解多目标柔性车间调度问题[J].工业仪表与自动化装置,2021,(03):10.[doi:10.19950/j.cnki.cn61-1121/th.2021.03.002]
 ZHAO Yong,SHI Yabin,HE Junhong,et al.Multi-objective flexible shop scheduling problem with hybrid algorithm based on Pareto[J].Industrial Instrumentation & Automation,2021,(05):10.[doi:10.19950/j.cnki.cn61-1121/th.2021.03.002]
[6]袁锦涛a,b,刘 军a,等.基于粒子群算法的工业机器人多目标最优轨迹规划[J].工业仪表与自动化装置,2021,(05):73.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.016]
 YUAN Jintaoa,b,LIU Juna,et al.Multi objective optimal trajectory planning of industrial robot based on particle swarm optimization[J].Industrial Instrumentation & Automation,2021,(05):73.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.016]
[7]李锦洋,关翔予,孔晓光,等.基于PSO算法优化模糊PID控制器的灵巧手抓取控制研究[J].工业仪表与自动化装置,2024,(02):75.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.013]
 LI Jinyang,GUAN Xiangyu,KONG Xiaoguang,et al.Research on grasp control of smart hand optimization using fuzzy PID controller based on PSO algorithm[J].Industrial Instrumentation & Automation,2024,(05):75.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.013]
[8]关翔予,王庆辉.基于PSO优化的形状记忆合金驱动器自适应滑模控制研究[J].工业仪表与自动化装置,2024,(02):113.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.020]
 Guan xiangyu,Wang qinghui.Research on adaptive sliding mode control of shape memory alloy driverbased on PSO optimization[J].Industrial Instrumentation & Automation,2024,(05):113.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.020]

备注/Memo

备注/Memo:
收稿日期:2018-03-13
作者简介:崔丽洁(1994),女,山东临沂人,硕士研究生,研究方向为智能控制理论及应用。
更新日期/Last Update: 2018-10-15