|本期目录/Table of Contents|

[1]段崇崇,张雨飞,冯 晨.基于DEAFCR算法的非线性系统模型参数辨识[J].工业仪表与自动化装置,2018,(06):3-6.[doi:1000-0682(2018)06-0000-00]
 DUAN Chongchong,ZHANG Yufei,FENG Chen.Parameter identification of nonlinear system model based on DEAFCR algorithm[J].Industrial Instrumentation & Automation,2018,(06):3-6.[doi:1000-0682(2018)06-0000-00]
点击复制

基于DEAFCR算法的非线性系统模型参数辨识

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2018年06期
页码:
3-6
栏目:
出版日期:
2018-12-15

文章信息/Info

Title:
Parameter identification of nonlinear system model based on DEAFCR algorithm
作者:
段崇崇张雨飞冯 晨
东南大学 能源与环境学院,南京210096
Author(s):
DUAN ChongchongZHANG YufeiFENG Chen
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
DEAFCR算法非线性系统参数辨识优化算法寿命机制
Keywords:
DEAFCR algorithm nonlinear system parameter identification optimization algorithm life mechanism
分类号:
TP273
DOI:
1000-0682(2018)06-0000-00
文献标志码:
A
摘要:
针对非线性模型参数辨识困难和不准确的问题,提出一种基于改进的差分进化算法的辨识算法。通过建立寿命机制,根据寿命值,动态调整缩放因子和交叉率,在算法初期保持多样性来避免早熟收敛,在后期保留优质解,加快收敛速度。为验证改进算法的性能和实用性,用典型测试函数进行对比测试,并辨识非线性传递函数模型和Hammerstein模型,试验结果表明改进的算法收敛速度快,辨识精度高,对非线性系统参数辨识有效可行。
Abstract:
Aiming at the difficulty and inaccuracy of nonlinear model parameter identification, a new identification algorithm based on improved differential evolution algorithm is proposed.The life mechanism is established.According to the life value, the differential weight and crossover rate are dynamically adjusted.At the beginning of the algorithm, diversity is maintained to avoid premature convergence,and the high quality solution is retained at the later stage to accelerate the convergence speed. In order to verify the performance and practicability of the improved algorithm,several typical test functions were compared and tested,and the nonlinear transfer function model and Hammerstein model were identified.The experimental results show that the improved algorithm has high convergence speed,high identification accuracy, and nonlinear system parameters.The identification is effective and feasible.

参考文献/References:

[1] 张小桃,倪维斗,李政,等.基于现场数据与神经网络的热工对象动态建模[J].热能动力工程,2005(01):34-37.

[2] 姜波,汪秉文.基于遗传算法的非线性系统模型参数估计[J].控制理论与应用,2000,17(1): 151-153.
[3] 林卫星,张惠娣,刘士荣,等.应用粒子群优化算法辨识 Hammerstein 模型[J].仪器仪表学报,2006,27(1):76-79.
[4] STORNR, PRICE K. Differential evoduation: a simple and efficient adaptive scheme for global optimization over continuous space[J].Global Optimization,1997(11):341-359.
[5] 吴亮红.差分进化算法及其应用研究[D].长沙:湖南大学, 2007:5-6.
[6] Das S, Konar A, Chakraborty UK. Two improved differen- tial evolution schemes for faster global search[C]. Procee- dings of the Conference on Genetic and Evolutionary Computation, ACM, 2005: 991-998.
[7] Ali Wagdy Mohamed, Hegazy Zaher Sabry. Constrained optimization based on modified differential evolution algorithm[J].Information Sciences,2012,194 (5) :171-208.
[8] Mandal K K, Chakraborty N. parameter study of differential evolution based optimal scheduling of hydrothermal system[J].Journal of Hydro-environment Research, 2012,7(1):72-80.
[9] Arabas Z. Michalewicz J. Mulawka. GAVaPS-a genetic algorithm with varying population size [C]. Proceedings of the 1th IEEE Conference on Evolution Computation, 1994: 3-78.
[10] 刘荣辉.多阶段自适应差分进化算法及应用研究[D].上海:东华大学,2012:6.
[11] 熊伟丽,陈敏芳,张乾,等.基于改进差分进化算法的非线性系统模型参数辨识[J].计算机应用研究,2014(01): 124-127.

相似文献/References:

[1]胥 良,贾宪生.基于神经网络的PID控制方法在矿井提升机中的应用[J].工业仪表与自动化装置,2015,(02):77.
 XU Liang,JIA Xiansheng.Based on neural network PID control methods in the study of the application of the mine hoist[J].Industrial Instrumentation & Automation,2015,(06):77.
[2]吴 宁,尚坡利.基于PIC16F876的温湿度无线控制系统设计[J].工业仪表与自动化装置,2015,(04):76.
 WU Ning,SHANG Poli.The design of the temperature and humidity wireless control system based on PIC16F876[J].Industrial Instrumentation & Automation,2015,(06):76.
[3]杨 智,刘德军.基于PLC的自整定控制器设计及实现[J].工业仪表与自动化装置,2016,(03):40.
 Yang Zhi,Lliu Dejun.Design and implementation of self-tuning controller based on PLC[J].Industrial Instrumentation & Automation,2016,(06):40.

备注/Memo

备注/Memo:
收稿日期:2018-05-04
作者简介:段崇崇(1994),男,硕士研究生,研究方向为能源信息自动化。
更新日期/Last Update: 2018-12-15