|本期目录/Table of Contents|

[1]赵艳东,张申申.基于改进蚁群算法的智能交通路径规划[J].工业仪表与自动化装置,2019,(02):30-32.[doi:1000-0682(2019)02-0000-00]
 ZHAO Yandong,ZHANG Shenshen.Intelligent transportation system path planning based on improved ant colony algorithm[J].Industrial Instrumentation & Automation,2019,(02):30-32.[doi:1000-0682(2019)02-0000-00]
点击复制

基于改进蚁群算法的智能交通路径规划

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2019年02期
页码:
30-32
栏目:
出版日期:
2019-04-15

文章信息/Info

Title:
Intelligent transportation system path planning based on improved ant colony algorithm
作者:
赵艳东张申申
青岛科技大学 电子工程及自动化学院,山东 青岛 266100
Author(s):
ZHAO YandongZHANG Shenshen
Qingdao University of Science and Technology,Electronic Engineering and Automation College,Shandong Qingdao 266100,China)
关键词:
智能交通系统蚁群算法路径寻优
Keywords:
intelligent transportation systemant colony algorithmpath optimization
分类号:
TN391
DOI:
1000-0682(2019)02-0000-00
文献标志码:
A
摘要:
社会的快速发展,带来了越来越严重的交通问题,长期以来导致环境污染,能源浪费,专家提出智能交通系统能够有效的改善交通问题,而路径寻优算法又是其中的关键点之一,但是原来研究的算法往往只是针对路径长短,没有考虑实际的路况和当时的情景。该文结合传统蚁群算法,模拟现实的路况和情景改进算法,并进行仿真和数据分析。仿真实验结果显示,改进蚁群算法在动态路径规划中具有良好的效果。
Abstract:
The rapid development of society has brought more and more serious traffic problems. It has caused environmental pollution and wasted energy for a long time. Experts suggest that intelligent transportation systems can effectively improve traffic problems, and path optimization algorithms are one of the key points. However, the original research algorithm is often only for the length of the path, without considering the actual situation and the situation at that time. In this paper, the traditional ant colony algorithm is used to simulate the realistic road conditions and scene improvement algorithms, and simulation and data analysis are performed. The simulation results show that the improved ant colony algorithm has a good effect in dynamic path planning.

参考文献/References:

[1] 陆化普,李瑞敏.城市智能交通系统的发展现状与趋势[J].工程研究-跨学科视野中的工程,2014,6(01):6-19.

[2] 谢民,高利新.蚁群算法在最优路径规划中的应用[J].计算机工程与应用,2008(08):245-248.
[3] 申铉京,刘阳阳,黄永平,徐铁,何习文.求解TSP问题的快速蚁群算法[J].吉林大学学报(工学版),2013,43(01): 147-151.
[4] 刘陪. 智能交通中动态路径诱导系统的建模与优化算法的研究[D].吉林大学,2017.
[5] 李威武,王慧,钱积新.智能交通系统中路径诱导算法研究进展[J].浙江大学学报(工学版),2005(06):819-825.

相似文献/References:

[1]田淑梅,高希军,张喜海.基于农田复杂区域的WSN最优移动路径获取策略[J].工业仪表与自动化装置,2015,(02):127.
 TIAN Shumei,GAO Xijun,ZHANG Xihai.Optional moving path acquisition strategy based on farm complex region for WSN[J].Industrial Instrumentation & Automation,2015,(02):127.
[2]沈 睿,朱学君.基于GIS的最优路径选择的设计与实现[J].工业仪表与自动化装置,2016,(02):102.
 SHEN Rui,ZHU Xuejun.Design and implementation of GIS based optimal path system[J].Industrial Instrumentation & Automation,2016,(02):102.
[3]辛耀东,安世奇.凝固浴系统智能控制参数调整策略研究[J].工业仪表与自动化装置,2017,(01):71.
 XIN Yaodong,AN Shiqi.Research on Parameter Adjustment Strategy of Intelligent Control in Coagulation Bath System[J].Industrial Instrumentation & Automation,2017,(02):71.
[4]高 林,张现伟.基于互联网信息的城市道路偶发拥堵判别算法研究与应用[J].工业仪表与自动化装置,2018,(01):7.[doi:1000-0682(2018)01-0000-00]
 GAO Lin,ZHANG Xianwei.Research and application onurban road incident congestionidentification algorithm based on internet information[J].Industrial Instrumentation & Automation,2018,(02):7.[doi:1000-0682(2018)01-0000-00]
[5]汤敏兰,沈晓明.基于蚁群算法的护理实习排班多约束问题研究[J].工业仪表与自动化装置,2018,(03):119.[doi:1000-0682(2018)03-0000-00]
 TANG Minlan,SHEN Xiaomin.Multi-constrained problem of nursing interns scheduling based on ant colony algorithm[J].Industrial Instrumentation & Automation,2018,(02):119.[doi:1000-0682(2018)03-0000-00]
[6]李巍巍,张海彪,王光辉,等.基于蚁群算法的倒立摆系统PID控制器设计[J].工业仪表与自动化装置,2018,(03):55.[doi:1000-0682(2018)03-0000-00]
 LI Weiwei,ZHANG Haibiao,WANG Guanghui,et al.Design of inverted pendulum PID controller based on ant colony algorithm[J].Industrial Instrumentation & Automation,2018,(02):55.[doi:1000-0682(2018)03-0000-00]
[7]王建荣,陈 斌,陈 柯.基于蚁群算法的电梯群控系统研究[J].工业仪表与自动化装置,2022,(04):127.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.026]
 WANG Jianrong,CHEN bin,CHEN Ke.Research on elevator group control system based on ant colony algorithm[J].Industrial Instrumentation & Automation,2022,(02):127.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.026]
[8]张靖雯.基于蚁群算法的智能汽车轨迹控制方法研究[J].工业仪表与自动化装置,2022,(06):41.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.008]
 ZHANG Jingwen.Research on intelligent vehicle track control method based on ant colony algorithm[J].Industrial Instrumentation & Automation,2022,(02):41.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.008]
[9]徐 洁,张 锐,汪志锋.改进蚁群算法在自动导引车路径规划中的应用[J].工业仪表与自动化装置,2023,(03):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
 XU Jie,ZHANG Rui,WANG Zhifeng.Application of improved ant colony algorithm in AGV path planning[J].Industrial Instrumentation & Automation,2023,(02):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
[10]王俊彭,等.基于蚁群算法的人员疏散机器人路径规划方法[J].工业仪表与自动化装置,2023,(04):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]
 WANG Junpeng,,et al.Path planning method of personnel evacuation robot based on ant colony algorithm[J].Industrial Instrumentation & Automation,2023,(02):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]

备注/Memo

备注/Memo:
收稿日期:2018-07-12
作者简介:赵艳东(1976),女,山东青岛人,博士,副教授,主要研究方向为时滞、非线性系统最优控制,智能控制理论及应用。
更新日期/Last Update: 2019-04-15