|本期目录/Table of Contents|

[1]朱 波,艾 红*.质量相关的回转窑故障诊断[J].工业仪表与自动化装置,2020,(02):12-15.
 ZHU Bo,AI Hong*.Quality relevant fault diagnosis of rotary kiln[J].Industrial Instrumentation & Automation,2020,(02):12-15.
点击复制

质量相关的回转窑故障诊断

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年02期
页码:
12-15
栏目:
出版日期:
2020-04-15

文章信息/Info

Title:
Quality relevant fault diagnosis of rotary kiln
文章编号:
1000-0682(2020)02-0000-00
作者:
朱 波艾 红*
北京信息科技大学 自动化学院,北京 100192
Author(s):
ZHU Bo AI Hong*
School of Automation, Beijing Information Science and Technology University, Beijing 100092, China
关键词:
偏最小二乘质量相关贡献图故障诊断回转窑
Keywords:
partial least squares quality relevant contribution plot fault diagnosis rotary kiln
分类号:
TP277
DOI:
-
文献标志码:
A
摘要:
针对水泥烧制复杂的工艺过程,各变量数据之间存在强耦合关系的特点,提出了偏最小二乘算法(partial least squares,PLS)结合贡献图分析的方法应用到回转窑系统中进行故障诊断。文中选取质量变量,建立过程变量和质量变量之间的回归关系,构建PLS模型实现通过过程变量数据对质量变量数据的预测。设置一定置信度的控制限,对超过控制限的故障进行报警。通过相对贡献图方法找出对故障贡献最大的变量,分析故障原因。仿真结果表明该方法可以及时检测到影响水泥品质的故障,确定故障原因。
Abstract:
In view of the complex process of cement firing and the strong coupling between the variable data,the partial least squares(PLS) algorithm combined with the contribution plot analysis method is proposed to the rotary kiln system for fault diagnosis.The quality variables are selected and the regression relationship between process variables and quality variables is established in this paper. PLS model is built to predict the quality variable data from the process variable data.By setting a control limit of a confidence?coefficient, the fault exceeding the control limit will be alarm.The variables contributing the most to the fault are found out by the contribution plot method and the fault causes will be analyzed.The simulation result shows that this method can detect the faults affecting the quality of cement in time and determine the cause of the faults.

参考文献/References:

[1]王福利,常玉清.多模态复杂工业过程监测及故障诊断 [M].北京:科学出版社,2016.

[2] 赵帅,宋冰,侍洪波.基于加权互信息主元分析算法的质量相关故障检测[J].化工学报,2018,69(03):962-973.
[3] 王光,孙程远,尹珅.基于动态全主成分回归质量相关的故障检测[J].信息与控制,2017,46(6):671-676.
[4] 彭开香,马亮,张凯.复杂工业过程质量相关的故障检测与诊断技术综述[J].自动化学报,2017,43(3):349-365.
[5] 纪洪泉,何潇,周东华.基于多元统计分析的故障检测方法[J].上海交通大学学报,2015,49(06):842-848+854.
[6] 孔祥玉,曹泽豪,安秋生,等.偏最小二乘线性模型及其非线性动态扩展模型综述[J].控制与决策,2018,33(09): 1537-1548.
[7] 王芬,王孝红,于宏亮.水泥回转窑烧成带温度动态建模研究[J].控制工程,2017,24(3):631-637.
[8] 李元,吴昊俣,张成,等.基于改进偏最小二乘的多模态过程故障检测方法[J].计算机应用,2018,38(12):3601-3606.[9] Li G,Qin S,Ji Y,et al.Total PLS Based Contribution Plots for Fault Diagnosis[J].Zidonghua Xuebao Acta Automa- tica Sinica, 20

相似文献/References:

[1]姚 林,张 岩.基于分布式稀疏LS的热轧过程质量相关故障检测[J].工业仪表与自动化装置,2020,(06):65.[doi:1000-0682(2020)06-0000-00]
 YAO Lin,ZHANG Yan.Quality-related fault detection for hot rolling processes based on distributed sparse LS[J].Industrial Instrumentation & Automation,2020,(02):65.[doi:1000-0682(2020)06-0000-00]

备注/Memo

备注/Memo:
收稿日期:2019-08-28
基金项目:北京市自然科学基金资助项目(4162025)
作者简介:朱波(1993),男,硕士研究生,研究方向为智能仪表与自动化装置。通讯作者:艾红,女,教授,主要从事自动化仪表方面的研究。
更新日期/Last Update: 1900-01-01