|本期目录/Table of Contents|

[1]王凯雄.基于遗传改进神经网络的煤矿井下传感器非线性校正方法[J].工业仪表与自动化装置,2024,(04):114-119.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]
 WANG Kaixiong.A nonlinear correction method for coal mine underground sensors based on genetic improved neural network[J].Industrial Instrumentation & Automation,2024,(04):114-119.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]
点击复制

基于遗传改进神经网络的煤矿井下传感器非线性校正方法(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年04期
页码:
114-119
栏目:
出版日期:
2024-08-15

文章信息/Info

Title:
A nonlinear correction method for coal mine underground sensors based on genetic improved neural network
文章编号:
1000-0682(2024)04-0114-04
作者:
王凯雄
(国家能源集团准能集团选煤厂,内蒙古 鄂尔多斯 010300)
Author(s):
WANG Kaixiong
(CHN Energy, Zhuneng Group Coal Preparation Plant, Inner Mongolia Ordos 010300, China)
关键词:
遗传算法神经网络煤矿井下传感器非线性校正方法
Keywords:
genetic algorithm neural networks coal mine underground sensors nonlinear correction methods
分类号:
TP13.66
DOI:
DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022
文献标志码:
A
摘要:
煤矿井下的工作环境十分恶劣,包括高湿度、高温、持续振动和大量粉尘等因素,这些因素都可能对传感器造成非线性干扰,使其输出结果与实际值产生显著偏差。这种偏差如果不加以校正,会严重影响煤矿的生产安全和效率。为此,该研究提出一种基于遗传算法优化的神经网络方法,旨在校正煤矿井下传感器非线性误差。根据已获取的传感器非线性误差数据,确定校正模型的输入与输出。以神经网络为核心构建校正模型,并利用遗传算法对校正模型的权值和阈值参数进行优化,以提高模型的校正性能。在模型训练完成后,将其应用于实际煤矿井下传感器非线性校正中。实验结果表明,经过该研究方法校正后,瓦斯浓度值更接近标准瓦斯浓度值,误差显著降低,这充分证明了该研究方法在实际应用中的有效性和可靠性。
Abstract:
The working environment underground in coal mines is extremely harsh, including high humidity, high temperature, continuous vibration, and a large amount of dust. These factors may cause nonlinear interference to sensors, resulting in significant deviations between their output results and actual values. If this deviation is not corrected, it will seriously affect the production safety and efficiency of coal mines. Therefore, this study proposes a neural network method based on genetic algorithm optimization, aiming to correct the nonlinear error of underground sensors in coal mines. Determine the input and output of the calibration model based on the obtained sensor nonlinear error data. Construct a calibration model with neural networks as the core, and use genetic algorithms to optimize the weight and threshold parameters of the calibration model to improve its calibration performance. After the model training is completed, it is applied to the nonlinear correction of sensors in actual coal mine underground. The experimental results show that after calibration by this research method, the gas concentration value is closer to the standard gas concentration value, and the error is significantly reduced. This fully demonstrates the effectiveness and reliability of this research method in practical applications.

参考文献/References:

[1]王璐,程勇,尹伟,等.基于Sage-Husa预测算法的直流无刷电机Hall传感器位置信息校正[J].仪器仪表学报,2023,44(10):90-99.

[2]GAO Z, ZHOU B, HOU B, et al. Self-calibration of nonlinear signal model for angular position sensors by model-based automatic search algorithm[J]. Sensors,2019,19(12):2760- 2760.?/div>
[3]LI Y, LI C H, SONG Z, et al. Correction method of three-axis magnetic sensor based on DA–LM[J]. Metals,2022,12(3):428-428.?/div>
[4]杨秋菊,王彤.扩散硅压阻式压力传感器非线性误差纠正方法[J].哈尔滨工程大学学报,2023,44(03):466-472.
[5]王玉芬,周国华,吴轲娜,等.基于动态学习策略多群体粒子群的消磁站水下磁传感器位置校正方法[J].兵工学报,2023,44(02):526-533.
[6]蒲明辉,罗祺,张金皓,等.差动平行极板变极距电容式传感器的误差校正方法[J].仪表技术与传感器,2022(03):33-39.
[7]娄敏,彭雪峰,叶大伟,等.高精密多极磁感应角位移传感器校正方法的技术研究[J].传感技术学报,2023,36(09):1452-1458.
[8]李景富,李福荣.基于误差反馈的光纤传感器测距畸变校正方法[J].激光杂志,2023,44(08):231-235.
[9]刘万里,张学亮,徐健斌,等.多传感器融合的时空关系在线自动校正方法研究[J].中国科学:技术科学,2023,53(11):1975-1989.
[10]申永鹏,王前程,王延峰,等.直流母线单电流传感器零点漂移误差自校正策略[J].电机与控制学报,2023,27(07):133-142.
[11]于博文,俞若愚,尹飞飞,等.一种CMOS温度传感器输出误差的数字校正方法[J].半导体技术,2023,48(01):43-47+53.
[12]肖舜仁,胡青春,李妮妮,等.基于Levenberg-Marquardt算法的无人机多传感器校正方法研究[J].机床与液压,2022,50(10):12-18.
[13]廖金湘,陈木荣,张敏,等.基于纹理特征的环状肌电传感器位置偏移校正方法[J].国外电子测量技术,2022,41(04):29-36.
[14]丁军,古愉川,黄霞,等.基于改进遗传算法优化人工神经网络的304不锈钢流变应力预测准确性研究[J].机械工程学报,2022,58(10):78-86.
[15]胡志新,王涛.改进遗传算法优化BP神经网络的双目相机标定[J].电光与控制,2022,29(01):75-79.
[16]谢琳琳,朱武,崔昊杨.改进遗传优化神经网络的光伏阵列故障诊断[J].电源技术,2022,46(07):802-806.
[17]于洋,张骏,王磊,等.基于改进遗传算法的多源数据继电保护定值优化策略[J].电子设计工程,2024,32(6):81-85.

相似文献/References:

[1]邹益民.基于SIMULINK-S函数的联合站脱水单神经元PID仿真[J].工业仪表与自动化装置,2014,(05):29.
 ZOU Yimin.Simulation of single neuron PID control for the union station crude oil dehydration process based on SIMULINK-S functions[J].Industrial Instrumentation & Automation,2014,(04):29.
[2]胥 良,贾宪生.基于神经网络的PID控制方法在矿井提升机中的应用[J].工业仪表与自动化装置,2015,(02):77.
 XU Liang,JIA Xiansheng.Based on neural network PID control methods in the study of the application of the mine hoist[J].Industrial Instrumentation & Automation,2015,(04):77.
[3]赵洪瑞,王洪远,朱素杰,等.基于RBF神经网络的镜头畸变校正方法[J].工业仪表与自动化装置,2015,(02):81.
 ZHAO Hongrui,WANG Hongyuan,ZHU Sujie,et al.The study of lens distortion correction based on radiate basis function neural networks[J].Industrial Instrumentation & Automation,2015,(04):81.
[4]陈宏希,邹益民.基于OPC的MATLAB与S7-200 PLC实时通信在过程控制实验装置中应用[J].工业仪表与自动化装置,2015,(05):55.
 CHEN Hongxi,ZOU Yimin.Research on application of real-time communication of MATLAB with S7-200 PLC in process control experimental device based on OPC[J].Industrial Instrumentation & Automation,2015,(04):55.
[5]刘 俊.基于搜寻者优化算法的PID神经网络解耦控制[J].工业仪表与自动化装置,2015,(05):97.
 LIU Jun.PID neural network decoupling control based on seeker optimization algorithm[J].Industrial Instrumentation & Automation,2015,(04):97.
[6]胥 良,郭 林,梁 亚,等.基于模糊RBF神经网络的智能PID控制[J].工业仪表与自动化装置,2015,(06):67.
 XU Liang,GUO Lin,LIANG Ya,et al.Study on intelligent PID control based on fuzzy RBF neural network[J].Industrial Instrumentation & Automation,2015,(04):67.
[7]梁书立,冯渭春.空间机械手模型参数在轨标定方法研究[J].工业仪表与自动化装置,2017,(02):3.
 LIANG Shuli,FENG Weichun.Research on the on-orbit calibration of space manipulator model parameter[J].Industrial Instrumentation & Automation,2017,(04):3.
[8]李 珣,刘 瑶,周 健,等.基于改进遗传算法的交通信号配时优化模型[J].工业仪表与自动化装置,2017,(04):125.
 LI Xun,LIU Yao,ZHOU Jian,et al.An optimization model of traffic signal cooperative timing based on improved GA[J].Industrial Instrumentation & Automation,2017,(04):125.
[9]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(04):21.
[10]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
 YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(04):75.
[11]刘若涵,赵振民,赵 杰.基于神经网络与遗传算法的悬臂式掘进机智能控制系统[J].工业仪表与自动化装置,2014,(06):67.
 LIU Ruohan,ZHAO Zhenmin,ZHAO Jie.The boom-type roadheader intelligent control system based on neural network and genetic algorithms[J].Industrial Instrumentation & Automation,2014,(04):67.

备注/Memo

备注/Memo:
收稿日期:2024-03-05第一作者:王凯雄(1987—),本科,工程师,研究方向为自动控制,E-mail:635949636@qq.com
更新日期/Last Update: 1900-01-01