|本期目录/Table of Contents|

[1]韩 勇,霍迎秋,费攀锋.基于模糊PID的电力铁塔攀爬机器人末端位姿控制研究[J].工业仪表与自动化装置,2023,(03):80-84+87.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.016]
 HAN Yong,HUO Yingqiu FEI Pan-feng.Research on terminal position and attitude control of power tower climbing robot based on fuzzy PID[J].Industrial Instrumentation & Automation,2023,(03):80-84+87.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.016]
点击复制

基于模糊PID的电力铁塔攀爬机器人末端位姿控制研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年03期
页码:
80-84+87
栏目:
出版日期:
2023-06-15

文章信息/Info

Title:
Research on terminal position and attitude control of power tower climbing robot based on fuzzy PID
文章编号:
1000-0682(2023)02-0080-05
作者:
韩 勇霍迎秋费攀锋
西北农林科技大学 信息工程学院, 陕西 杨凌 712100
Author(s):
HAN Yong HUO Yingqiu FEI Pan-feng
College of Information Engineering, Northwest A&F University, Shaanxi Yangling, 712100,China
关键词:
模糊PID电力铁塔攀爬机器人末端位姿控制位姿偏移差模糊控制规则
Keywords:
fuzzy PID power tower climbing robot end position and attitude control posture deviation difference fuzzy control rules
分类号:
TP242
DOI:
10.19950/j.cnki.cn61-1121/th.2023.03.016
文献标志码:
A
摘要:
电力铁塔攀爬机器人工作过程中末端位姿易发生偏移,导致机器人末端位姿控制难度增加,所以提出基于模糊PID的电力铁塔攀爬机器人末端位姿控制方法。构建电力铁塔攀爬机器人的运动学模型,分析机器人末端位姿参数变化,获得攀爬机器人位姿偏移值。通过模糊推理策略计算位姿偏移值和PID比例、积分和微分三个控制参数之间的关联,确定机器人末端位姿的模糊控制规则,利用改进人工鱼群算法优化模糊PID初始参数,以此实现电力铁塔攀爬机器人末端位姿控制。测试结果显示:该方法攀爬机器人末端位置计算精度较高,位姿偏移值较小,在有无障碍物两种情况下的平均控制误差低于0.25 cm,能够实现机器人不同攀爬工况下的末端位姿控制。
Abstract:
The end position and posture of the power tower climbing robot is prone to shift during its working process, which increases the difficulty of the robot’s end position and posture control. Therefore, a fuzzy PID control method for the end position and posture of the power tower climbing robot is proposed. The kinematics model of the power tower climbing robot is constructed, and the change of the robot end position and posture parameters is analyzed to obtain the position and posture offset value of the climbing robot. Through the fuzzy reasoning strategy, the relationship between the position and attitude deviation value and the PID proportion, integral and differential control parameters is calculated, and the fuzzy control rules of the robot’s end position and attitude are determined. The improved artificial fish swarm algorithm is used to optimize the initial parameters of the fuzzy PID, so as to realize the end position and attitude control of the power tower climber. The test results show that this method has high accuracy in the calculation of the end position of the climbing robot, small deviation of the position and posture, and the average control error is less than 0.25 cm in the case of obstacles or not, which can achieve the end position and posture control of the robot under different climbing conditions.

参考文献/References:

[1]祝润泽,黄昕,高燕.基于六维鼠标的机器人位姿控制研究[J].机床与液压,2022,50(09):61-65.

[2]王丽君,王儒轩,王洋滨,等.输电铁塔攀爬机器人夹持机构设计[J].机械传动,2022,46(04):118-126.
[3]都海波,葛展展,张金锋,等.基于改进天牛须算法的电力攀爬机器人运动学逆解算法[J].控制与决策,2022,37(09):2217-2225.
[4]刘志,陈恳,徐静.基于模型和数据驱动的机器人6D位姿估计方法[J].清华大学学报(自然科学版),2022,62(03):391-399.
[5]蔡必壮,葛展展,都海波.基于数字孪生的角钢塔攀爬机器人系统研究[J].控制工程,2022,29(03):509-514.
[6]魏军英,张聪,王吉岱,等.输电铁塔攀爬机器人的结构分析与实验验证[J].机械传动,2021,45(01):140-145.
[7]周旭,鲁墨武,姜春英,等.改进的PSO-BP算法在工业机器人末端位姿误差补偿中的应用[J].信息与控制,2021,50(04):505-512.
[8]马飞越,刘佳豪,赵涛,等.电力巡检机器人运行姿态的终端滑模控制[J].西南大学学报(自然科学版),2021,43(12):172-179.
[9]刘帅,庄红军,高宏力,等.新型电力铁塔攀爬机器人的设计及攀爬步态分析[J].机械设计与制造,2021(10):225-228+232.
[10]吴昊,张伟军,石利荣,等.电磁吸附式铁塔攀爬机器人设计和实验验证[J].机械设计与研究,2022,38(04):6-11.
[11]张磊,徐孝彬,曹晨飞,等.基于动态特征剔除的图像与点云融合的机器人位姿估计方法[J].中国激光,2022,49(06):58-69.
[12]王刚,宋英杰,唐武生,等.基于串级PID的机器鱼位姿控制算法[J].吉林大学学报(理学版),2022,60(03):734-742.
[13]李志鹏,程兰,王志飞,等.卡尔曼滤波框架下基于最大相关熵的移动机器人位姿估计[J].太原理工大学学报,2021,52(06):936-944.
[14]金紫凤,潘思聪,危辉.可变环境下基于位姿变换矩阵的机器人无标定手眼协调方法[J].电子学报,2022,50(10):2318-2328.
[15]张隽赓,张提升,唐海亮,等.低速移动机器人的同时跟踪与避障研究[J].计算机仿真,2022,39(08):420-426.

相似文献/References:

[1]吴 宁,尚坡利.基于PIC16F876的温湿度无线控制系统设计[J].工业仪表与自动化装置,2015,(04):76.
 WU Ning,SHANG Poli.The design of the temperature and humidity wireless control system based on PIC16F876[J].Industrial Instrumentation & Automation,2015,(03):76.
[2]张英坤,刘会忠.基于模糊PID的石墨化炉温度控制系统[J].工业仪表与自动化装置,2015,(06):26.
 ZHANG Yingkun,LIU Huizhong.The temperature control system of graphitization furnace based on fuzzy PID[J].Industrial Instrumentation & Automation,2015,(03):26.
[3]吴明亮,魏胜旗.基于PLC的负压煤粉制备控制系统的设计[J].工业仪表与自动化装置,2016,(05):60.
 WU Mingliang,WEI Shengqi.Design of the control system of the negative pressure coal powder preparation based on PLC[J].Industrial Instrumentation & Automation,2016,(03):60.
[4]童克波.基于模糊PID和现场总线的多电动机同步控制应用[J].工业仪表与自动化装置,2017,(02):90.
 TONG Kebo.Application of multi motor synchronous control based on fuzzy PID and field bus[J].Industrial Instrumentation & Automation,2017,(03):90.
[5]窦立环.基于自适应模糊PID的二级倒立摆稳定控制研究[J].工业仪表与自动化装置,2017,(06):124.[doi:1000-0682(2017)06-0124-03]
 DOU Lihuan.Stable control research of double inverted pendulum based on the fuzzy self-adaptive PID controller[J].Industrial Instrumentation & Automation,2017,(03):124.[doi:1000-0682(2017)06-0124-03]
[6]施明泰,胡全贵,郭 翔,等.数据中心智能巡检机器人管理平台自主控制方法[J].工业仪表与自动化装置,2020,(02):65.
 SHI Mingtai,HU Quangui,GUO Xiang,et al.Autonomous control method for intelligent inspection robot management platform of data center[J].Industrial Instrumentation & Automation,2020,(03):65.
[7]戴忠玉,胡芳仁,尤敦喜,等.用于CRDS痕量气体检测的温控系统设计与实现[J].工业仪表与自动化装置,2023,(06):32.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.005]
 DAI Zhongyu,HU Fangren,YOU Dunxi,et al.Design and implementation of a temperature control system for trace gas detection in CRDS[J].Industrial Instrumentation & Automation,2023,(03):32.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.005]

备注/Memo

备注/Memo:
收稿日期:2023-02-09

基金项目:?/div>
国家自然科学基金项目(41574117)

第一作者:
韩勇(1973—),男,吉林辽源人,本科,实验师,研究方向为计算机及其应用。
更新日期/Last Update: 1900-01-01