参考文献/References:
[1]Voort M V D,Dougherty M,Watson S.Combining kohonen maps with arima time series models to forecast traffic flow [J].Transportation Research Part C(Emerging Techno- logies),1996,4(5):307-318.[2] Gong Y S, Zhang Y. Research of Short-Term Traffic Volume Prediction Based on Kalman Filtering[C]//Inter- national Conference on Intelligent Networks & Intelligent Systems. IEEE, 2014.
[3] Zhang C,Sun S,Yu G.A Bayesian network approach to time series forecasting of short-term traffic flows[C]// Intelligent Transportation Systems, The 7th International IEEE Conference on, IEEE, 2004.
[4] Chan K Y, Dillon T S, Singh J, et al. Neural-Network- Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg- Marquardt Algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(2):644-654.
[5] Park B, Messer C, Urbanik Ii T. Short-Term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network[J].Transportation Research Record: Journal of the Transportation Research Board,1998,1651: 39-47.
[6] Castro-Neto M, Jeong Y S, Jeong M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J].Expert Systems with Applica- tions, 2009, 36(3-part-P2):6164-6173.
[7] Li R, Lu H. Combined Neural Network Approach for Short-Term Urban Freeway Traffic Flow Prediction[C]// Wuhan,China:Advances in Neural Networks-ISNN 2009, 6th International Symposium on Neural Networks, Procee- dings, Part III. Springer Berlin Heidelberg,2009.
[8] 郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究[J].中国公路学报,2005(01):89-93.
[9] Zulong D, Dafang Z, Xin W, et al. A Hybrid Model For Short-Term Traffic Volume Prediction In Massive Trans- portation Systems[J].IEEE Transactions on Intelligent Transportation Systems, 2018:1-12.
[10] Huang W, Song G, Hong H, et al. Deep Architecture for Traffic Flow Prediction:Deep Belief Networks With Multitask Learning[J].IEEE Transactions on Intelligent Transportation Systems,2014,15(5):2191-2201.
[11] Lü Y,Duan Y,Kang W,et al.Traffic Flow Prediction With Big Data:A Deep Learning Approach[J].IEEE TRAN- SACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2015,16(2):865-873.
[12] Koesdwiady A,Soua R,Karray F.Improving Traffic Flow Prediction With Weather Information in Connected Cars: A Deep Learning Approach[J].IEEE Transactions on Vehicular Technology, 2016, 65(12):1-1.
[13] 罗向龙,焦琴琴,牛力瑶,等.基于深度学习的短时交通流 预测[J].计算机应用研究,2017,34(01):91-93+97.
[14] Yang H F, Dillon T S, Chen Y P P. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2371-2381.
[15] Zhao Z, Chen W, Wu X, et al. LSTM network: a deep learning approach for short-term traffic forecast[J].IET Intelligent Transport Systems, 2017, 11(2):68-75.
[16] Jain R K,Smith K M,Culligan P J,et al.Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on perfor- mance accuracy[J].Applied Energy, 2014,123:168-178.
相似文献/References:
[1]张晓华,马 煜,杨晨辉,等.基于卷积神经网络的设备安装位置智能识别方法[J].工业仪表与自动化装置,2021,(01):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
ZHANG Xiaohua,MA yu,YANG Chenhui,et al.Intelligent identification method of equipment installation position based on convolution neural network[J].Industrial Instrumentation & Automation,2021,(02):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
[2]牟海维,段朝辉*,李 林,等.基于边缘特征和CNN联合的多视航拍图像配准方法[J].工业仪表与自动化装置,2021,(04):87.[doi:10.19950/j.cnki.cn61-1121/th.2021.04.018]
MU Haiwei,DUAN Chaohui*,LI Lin,et al.Multi-view aerial image registration method based on edge feature and CNN[J].Industrial Instrumentation & Automation,2021,(02):87.[doi:10.19950/j.cnki.cn61-1121/th.2021.04.018]
[3]甘 李,姚 智,李 闯,等.基于卷积神经网络的汽轮机抗燃油泄漏智能预警技术研究[J].工业仪表与自动化装置,2022,(04):8.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.002]
GAN Li,YAO Zhi,LI Chuang,et al.Research on intelligent early warning technology of steam turbine anti fuel leakage based on convolutional neural network[J].Industrial Instrumentation & Automation,2022,(02):8.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.002]
[4]李 娜,曹丽明.一种风力发电机轴承故障智能诊断方法[J].工业仪表与自动化装置,2022,(05):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]
LI Na,CAO Liming.An intelligent diagnosis method for wind turbine bearing fault[J].Industrial Instrumentation & Automation,2022,(02):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]
[5]王志波,王继柱.基于光纤光栅传感技术和卷积神经网络的铁路信号调节方法研究[J].工业仪表与自动化装置,2023,(01):91.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.018]
WANG Zhibo,WANG Jizhu.Research on railway signal regulation based on fiber grating sensing technology and convolutional neural network[J].Industrial Instrumentation & Automation,2023,(02):91.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.018]
[6]徐晓强,丁 峰,毕淑敏.基于高速通信的港口设备远程检测与控制技术研究[J].工业仪表与自动化装置,2024,(05):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]
XU Xiaoqiang,DING Feng,BI Shumin.Design of remote detection and control technology for port equipment based on high-speed mobile communication[J].Industrial Instrumentation & Automation,2024,(02):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]