|本期目录/Table of Contents|

[1]董 杰,刘文峰,乔法起,等.基于SVM的井下水仓淤泥识别系统的研究[J].工业仪表与自动化装置,2021,(05):112-116.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.024]
 DONG Jie,LIU Wenfeng,QIAO Faqi,et al.Research on sludge recognition system of underground water silo based on SVM[J].Industrial Instrumentation & Automation,2021,(05):112-116.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.024]
点击复制

基于SVM的井下水仓淤泥识别系统的研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2021年05期
页码:
112-116
栏目:
出版日期:
2021-10-15

文章信息/Info

Title:
Research on sludge recognition system of underground water silo based on SVM
作者:
董 杰1刘文峰1乔法起1蔡佩征2侯力扬2孟祥忠2
1.内蒙古黄陶勒盖煤炭有限责任公司,内蒙古 鄂尔多斯 017212;
2.青岛科技大学,山东 青岛 266000
Author(s):
DONG Jie1LIU Wenfeng1QIAO Faqi1;CAI Peizheng2HOU Liyang2MENG Xiangzhong2
1.Inner Mongolia huangtaolegai Coal Co., Ltd., Inner Mongolia Ordos 017212,China;
2.Qingdao University of science and technology, Shandong Qingdao 266000,China
关键词:
水仓淤泥表面含水量识别机器视觉SVM支持向量机图像识别
Keywords:
recognition of water content on silt surface of water silo machine vision SVM support vector machine image recognition
分类号:
TP2
DOI:
10.19950/j.cnki.cn61-1121/th.2021.05.024
文献标志码:
A
摘要:
针对煤矿井下水仓经常出现的淤泥中含水量过多而导致的涌仓问题,该文设计了一种基于SVM的井下水仓淤泥表面含水量识别系统。以井下水仓的淤泥与水面对光线反射的不同情况作为识别特征,通过对数及对比度拉伸变换法提高图片局部亮度;采用自适应阈值分割法将灰度图进行二值化处理。在SVM模型中进行前景、背景分割时,将二值化图片作为输入而不是像传统SVM分类直接输入原图,有利于提高识别精度。分别计算将彩色图、二值图作为输入图像的相似度、正确率、错分率和漏分率,得出结果:采用二值化图片作为输入图片的各项分割属性均优于彩色图作为输入图像,为井下水仓涌仓预警系统的搭建提供了基础。
Abstract:
Aiming at the problem of flooding caused by excessive water content in the silt that often occurs in underground sumps in coal mines, a SVM-based system for identifying the surface water content of silt in underground sumps is designed. Taking the silt in the underground sump and the reflection of light on the water surface as the identification feature, the local brightness of the image is improved by the logarithmic and contrast stretching transformation method; the adaptive threshold segmentation method is used to binarize the gray image. When segmenting the foreground and background in the SVM model, the binary image is used as input instead of directly inputting the original image like the traditional SVM classification, which is beneficial to improve the recognition accuracy. Calculate the similarity, correct rate, error rate and omission rate of the color image and the binary image as the input image. The result is that the segmentation attributes of the binary image as the input image are better than the color image As the input image, it provides the basis for the construction of the early warning system of underground water storage inrush.

参考文献/References:

[1] 侯艳阳.基于OpenCV的医学图像处理软件设计与实现[J].无线互联科技,2020,17(07):38-39.

[2] 储海东,赵岩,庄斌,等.基于计算机视觉技术的火情定位及检测系统[J].电子设计工程,2020,28(07):156-160+164.
[3] DHARVasant,SUN Chenshuo,BATRA Puneet. Transforming finance into vision: concurrent financial time series as convolutional nets.[J]. Pubmed,2019,7(4).
[4] HAN Pengfei, ZHAO Gang. A review of edge-based 3D tracking of rigid objects[J]. Virtual Reality & Intelligent Hardware,2019,1(6).
[5] 刘涛.浅埋薄基岩煤层上覆顶板突水机理研究[J].煤矿现代化,2019(04):101-103.
[6] 陈柏金,赵亚飞.基于OpenCV的高温锻件测量系统[J].华中科技大学学报(自然科学版),2013,41(08):79-82.
[7] 李彩萍.视频监控系统在煤矿水害防治中的研究与应用[D].太原:太原理工大学,2013.
[8] 王昱棠,付梦印,杨毅.Fast speedometer identification in dynamic scene based on phase correlation[J].Journal of Beijing Institute of Technology,2012,21(03):394-399.
[9] WANG Weiyan, ZHANG Yunquan, YAN Shengen,et al.Parallelization and performance optimization on face detection algorithm with openCL: A case study[J].Tsinghua Science and Technology,2012,17(03):287-295.
[10]王俊骅,张方方,张兰芳.基于OpenCV和Halcon的交通冲突视频自动检测及数据处理[J].同济大学学报(自然科学版),2010,38(02):238-244.
[11]余登武,刘敏.基于深度卷积神经网络与支持向量机的变电站非侵入式负荷分解[J].电力科学与工程,2020,36(06):24-30.
[12]陈峰,姜伊欣,娄雨靖.基于小波包分解和支持向量机的局部放电识别方法研究[J].山东电力技术,2020,47(06):5-9.
[13]周云,周赛,裴熠麟,等.基于大数据与区间仿射算法的非接触式桥梁结构影响线识别[J].地震工程与工程振动,2020,40(03):20-31.
[14]高良俊,于金星,陈鑫,等.基于特征提取和SVM的硬件木马检测方法[J].微电子学,2020,50(06):914-919.
[15]曹金凤,郭继鸿,李建伟,等.基于支持向量机的油滴识别及粒径分布特征提取算法[J].船海工程,2020,49(02):10-14+17.

相似文献/References:

[1]李志明.基于机器视觉的鲜枣群体大小检测算法[J].工业仪表与自动化装置,2016,(05):29.
 LI Zhiming.Fresh jujubes group size detection algorithm based on Machine Vision[J].Industrial Instrumentation & Automation,2016,(05):29.
[2]任晓芳,林 娟.六自由度机械手抓取系统的OPC通信技术研究[J].工业仪表与自动化装置,2017,(02):109.
 REN Xiaofang,LIN Juan.Research on OPC technology with fetching system of robot with six DOF[J].Industrial Instrumentation & Automation,2017,(05):109.
[3]魏元焜,吴丹阳.基于NI myRIO的机器视觉搬运车设计[J].工业仪表与自动化装置,2019,(05):53.[doi:1000-0682(2019)05-0000-00]
 WEI Yuankun,WU Danyang.Design of machine vision carrier vehicle based on NI myRIO[J].Industrial Instrumentation & Automation,2019,(05):53.[doi:1000-0682(2019)05-0000-00]
[4]黄金梭,沈正华,鲁文杰.基于机器视觉的微动开关正反面外观检测与分拣系统的设计与实现[J].工业仪表与自动化装置,2020,(03):121.[doi:1000-0682(2020)03-0000-00]
 HUANG Jinsuo,SHEN Zhenghua,LU Wenjie.Design and implementation of double face appearance inspection and sorting system of micro-switch based on machine vision[J].Industrial Instrumentation & Automation,2020,(05):121.[doi:1000-0682(2020)03-0000-00]
[5]张 恒,何文雪.基于机器视觉的坚果尺寸检测系统设计[J].工业仪表与自动化装置,2020,(06):52.[doi:1000-0682(2020)06-0000-00]
 ZHANG Heng,HE Wenxue.Design of nut size detection system based on machine vision[J].Industrial Instrumentation & Automation,2020,(05):52.[doi:1000-0682(2020)06-0000-00]
[6]陈 杰,王宏彦.基于视觉的汽车轮毂打磨实训系统设计[J].工业仪表与自动化装置,2021,(01):36.[doi:10.3969/j.issn.1000-0682.2021.01.008]
 CHEN Jie,WANG Hongyan.Design of practical training system of wheel hub grinding based on vision[J].Industrial Instrumentation & Automation,2021,(05):36.[doi:10.3969/j.issn.1000-0682.2021.01.008]
[7]杨 利,谢永超*.基于PLC和机器视觉的工件自动分拣系统设计[J].工业仪表与自动化装置,2022,(01):48.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.010]
 YANG Li,XIE Yongchao*.Design of automatic sorting system for workpieces based on PLC and machine machine vision[J].Industrial Instrumentation & Automation,2022,(05):48.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.010]
[8]沈正华,黄金梭,仇文奎.基于机器视觉的六面外观检测与分拣系统的设计与实现[J].工业仪表与自动化装置,2022,(02):36.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.008]
 SHEN Zhenghua,HUANG Jinsuo,QIU Wenkui.Design and implementation of double face appearance inspection and sorting system of micro-switch based on machine vision[J].Industrial Instrumentation & Automation,2022,(05):36.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.008]
[9]滕 腾,樊春玲,张春堂.基于机器视觉的托盘生产线上原料木板的识别[J].工业仪表与自动化装置,2022,(02):67.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.014]
 TENG Teng,FAN Chunling,ZHANG Chuntang.Identification of raw board in pallet production line based on machine vision[J].Industrial Instrumentation & Automation,2022,(05):67.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.014]
[10]王建冲,高军伟,张炳星,等.基于机器视觉的SOP芯片引脚缺陷检测系统[J].工业仪表与自动化装置,2022,(05):32.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.006]
 WANG Jianchong,GAO Junwei,ZHANG Bingxing,et al.Design of SOP chip pin defect detection system based on machine vision[J].Industrial Instrumentation & Automation,2022,(05):32.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.006]

备注/Memo

备注/Memo:
收稿日期:2020-07-24

作者简介:
孟祥忠,工学博士,教授,主要研究方向为仪器与测试技术等。
更新日期/Last Update: 1900-01-01