|本期目录/Table of Contents|

[1]卢 翔,苏 杨,余 萱,等.基于深度学习的机房人物重识别研究[J].工业仪表与自动化装置,2021,(02):104-107.[doi:10.19950/j.cnki.cn61-1121/th.2021.02.024]
 LU Xiang,SU Yang,YU Xuan,et al.Research on computer room character recognition based on deep learning[J].Industrial Instrumentation & Automation,2021,(02):104-107.[doi:10.19950/j.cnki.cn61-1121/th.2021.02.024]
点击复制

基于深度学习的机房人物重识别研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2021年02期
页码:
104-107
栏目:
出版日期:
2021-04-15

文章信息/Info

Title:
Research on computer room character recognition based on deep learning
作者:
卢 翔1苏 杨1余 萱1张少超2
1.贵州电网有限责任公司 信息中心;
2.贵州大学 机械工程学院,贵州 贵阳 550002
Author(s):
LU Xiang1SU Yang1YU Xuan1ZHANG Shaochao2
1. Information center of Guizhou Power Grid Co., Ltd.;
2. Mechanical engineering of Guizhou University, Guizhou Guiyang 550002, China
关键词:
深度学习人物重识别残差神经网络三元损失函数
Keywords:
deep learning character recognition residual neural network ternary loss function
分类号:
TP391
DOI:
10.19950/j.cnki.cn61-1121/th.2021.02.024
文献标志码:
A
摘要:
机房内的各类设施通常由管理员统一调度,对视频中管理人员的路径追踪至关重要。为此该文提出一种基于深度学习的机房人物重识别方法,以为后续的责任追查过程提供依据。该方法以残差神经网络ResNet-50作为特征提取网络,并使用三元损失函数使模型更适用于人物重识别任务。以贵州省某电网系统机房作为试验平台进行测试。结果表明,该方法的准确率与召回率均满足实际要求,具备一定的工程参考价值。
Abstract:
All kinds of facilities in the computer room are usually dispatched by the administrator, which is very important for the administrator’s path tracking in the video. In order to provide the basis for the follow-up process of responsibility tracing, a new method based on deep learning is proposed. In this method, the residual neural network resnet-50 is used as the feature extraction network, and the ternary loss function is used to make the model more suitable for human re recognition task. A power grid system room in Guizhou Province is used as the test platform for testing. The results show that the accuracy and recall rate of the method meet the actual requirements, and have certain engineering reference value.

参考文献/References:

[1]张化祥,刘丽. 行人重识别研究综述[J].山东师范大学学报(自然科学版),2018,33(04):379-387.

[2]宋婉茹,赵晴晴,陈昌红,等. 行人重识别研究综述[J].智能系统学报,2017,12(06):770-780.
[3] ZHAO R, OUYANG W, WANG X. Unsupervised salience learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 3586-3593.
[4] LISANTI G, MASI I, BAGDANOV A D, et al. Person re-identification by iterative reweighted sparse ranking[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(8): 1629-1642.
[5] LISANTI G, MASI I, DEL Bimbo A. Matching people across camera views using kernel canonical correlation analysis [C]//Proceedings of the International Conference on Distributed Smart Cameras, 2014: 10.
[6] 卢宏涛,张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理,2016,31(01):1-17.
[7] 李彦冬,郝宗波,雷航. 卷积神经网络研究综述[J]. 计算机应用,2016,36(09): 2508-2515.
[8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553): 436.
[9] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical image analysis, 2017, 42: 60-88.
[10] WU J, ZHAO Y, LIU X. Enhancing person retrieval with joint person detection attribute learning and identification[C]// Pacific Rim Conference on Multimedia. Springer, Cham, 2018: 113-124.
[11] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[J]. 2015:770-778.
[12] LUO H, JIANG W, GU Y , et al. A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2019(99):1-1.

相似文献/References:

[1]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
 YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(02):75.
[2]徐先峰,黄刘洋,龚 美.基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测[J].工业仪表与自动化装置,2020,(01):13.
 XU Xianfeng,HUANG Liuyang,GONG Mei.Short-term traffic flow prediction based on combined model of convolutional neural network and bidirectional long-term memory network[J].Industrial Instrumentation & Automation,2020,(02):13.
[3]张晓华,马 煜,杨晨辉,等.基于卷积神经网络的设备安装位置智能识别方法[J].工业仪表与自动化装置,2021,(01):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
 ZHANG Xiaohua,MA yu,YANG Chenhui,et al.Intelligent identification method of equipment installation position based on convolution neural network[J].Industrial Instrumentation & Automation,2021,(02):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
[4]苏 杨,卢 翔,李 琨,等.基于轻量深度学习网络的机房人物检测研究[J].工业仪表与自动化装置,2021,(01):100.[doi:10.3969/j.issn.1000-0682.2021.01.024]
 SU Yang,LU Xiang,LI Kun,et al.Research on computer room human detection based on lightweight deep learning network[J].Industrial Instrumentation & Automation,2021,(02):100.[doi:10.3969/j.issn.1000-0682.2021.01.024]
[5]倪四清,左光恒,张 俊.高速公路建设远程视频监控系统的设计与实现[J].工业仪表与自动化装置,2022,(02):76.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.016]
 NI Siqing,ZUO Guangheng,ZHANG Jun.Design and realization of remote video monitoring system for expressway construction[J].Industrial Instrumentation & Automation,2022,(02):76.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.016]
[6]何凌志,王玉珏,周月娥,等.基于改进的YOLOv5算法路面检测设计[J].工业仪表与自动化装置,2023,(04):93.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.017]
 HE Lingzhi,WANG Yujue,ZHOU Yuee,et al.Pavement detection design based on improved YOLOv5 algorithm[J].Industrial Instrumentation & Automation,2023,(02):93.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.017]
[7]王怀志,高德欣.基于深度学习的矿井电力短期负荷预测方法[J].工业仪表与自动化装置,2024,(01):51.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.01.012]
 WANG Huaizhi,GAO Dexin.Mine power short-term load forecasting method based on deep learning[J].Industrial Instrumentation & Automation,2024,(02):51.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.01.012]
[8]骈璐璐,裴焕斗,张宇璇.多场景烟雾环境下改进的YOLOv5s烟雾检测算法[J].工业仪表与自动化装置,2024,(02):101.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.018]
 PIAN Lulu,PEI Huandou,ZHANG Yuxuan.Improved YOLOv5s smoke detection algorithm in multi-scenario smoke environment[J].Industrial Instrumentation & Automation,2024,(02):101.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.018]
[9]徐晓强,丁 峰,毕淑敏.基于高速通信的港口设备远程检测与控制技术研究[J].工业仪表与自动化装置,2024,(05):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]
 XU Xiaoqiang,DING Feng,BI Shumin.Design of remote detection and control technology for port equipment based on high-speed mobile communication[J].Industrial Instrumentation & Automation,2024,(02):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]

备注/Memo

备注/Memo:
收稿日期:2020-08-28

作者简介:
卢翔(1984),男,硕士研究生,高级工程师,研究方向为信息化发展。
更新日期/Last Update: 1900-01-01