参考文献/References:
[1] JIN H B . Accurate multispectral image registration based on keypoint descriptors, Doctoral Dissertation[C]. Beijing: Beijing University of Posts and Telecommunications, 2019.
[2] PENG W , QU Z , PING W , et al. A Coarse-to-Fine Matching Algorithm for FLIR and Optical Satellite Image Registration[J]. Geoscience & Remote Sensing Letters IEEE, 2012, 9(4):599-603.
[3] MARTIN S , DURRANI T S . A New Divergence Measure for Medical Image Registration[J]. IEEE Trans Image Process, 2007, 16:957-966.
[4] LEGG P A , ROSIN P L , MARSHALL D , et al. Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation[J]. Comput Med Imaging Graph, 2013, 37(7–8):597-606.
[5] KOLAR R , HARABIS V , ODSTRCILIK J . Hybrid retinal image registration using phase correlation[J]. Journal of Photographic Science, 2013, 61(4):369-384.
[6] TAGARAEH D , RAO M . Why does mutual-information work for image registration? A deterministic explanation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015 , 37(6):1286-1296.
[7] WOO J , STONE M , PRINCE J L . Multimodal Registration via Mutual Information Incorporating Geometric and Spatial Context[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2015, 24(2):757.
[8] SONG Z L , LI S , GEORGE T F . Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories[J]. Optics Express, 2010, 18(2):513-522.
[9] MA J , ZHOU H , ZHAO J , et al. Robust feature matching for remote sensing image registration via locally linear transforming[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(12):6469-6481.
[10] YU D , YANG F , YANG C , et al. Fast rotation-free feature-based image registration using improved N-SIFT and GMM-based parallel optimization[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(8):1653-1664.
[11] PAUL S , DURGAM U K , PATI U C . Multi-modal optical image registration using modified SIFT[C]// ICACNI - 2016. 2016.
[12] GAO B , LU P , WOO W L , et al. Variational bayesian subgroup adaptive sparse component extraction for diagnostic imaging system[J]. IEEE Transactions on Industrial Electronics, 2018:1.
[13] He K , Yan L , Sclaroff S . Local descriptors optimized for average precision[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:596-605.
[14] Ronneberger O , Fischer P , Brox T . U-Net: Convolutional networks for biomedical image segmentation[J]. Springer, Cham, 2015:234–241.
相似文献/References:
[1]张海静,姚博彬*,武奇生.基于差分数据图和深度学习的短时交通流预测[J].工业仪表与自动化装置,2020,(02):3.
ZHANG Haijing,YAO Bobin,WU Qisheng.Short-term traffic flow prediction based on the differential data graph and deep learning[J].Industrial Instrumentation & Automation,2020,(04):3.
[2]张晓华,马 煜,杨晨辉,等.基于卷积神经网络的设备安装位置智能识别方法[J].工业仪表与自动化装置,2021,(01):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
ZHANG Xiaohua,MA yu,YANG Chenhui,et al.Intelligent identification method of equipment installation position based on convolution neural network[J].Industrial Instrumentation & Automation,2021,(04):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
[3]甘 李,姚 智,李 闯,等.基于卷积神经网络的汽轮机抗燃油泄漏智能预警技术研究[J].工业仪表与自动化装置,2022,(04):8.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.002]
GAN Li,YAO Zhi,LI Chuang,et al.Research on intelligent early warning technology of steam turbine anti fuel leakage based on convolutional neural network[J].Industrial Instrumentation & Automation,2022,(04):8.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.002]
[4]李 娜,曹丽明.一种风力发电机轴承故障智能诊断方法[J].工业仪表与自动化装置,2022,(05):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]
LI Na,CAO Liming.An intelligent diagnosis method for wind turbine bearing fault[J].Industrial Instrumentation & Automation,2022,(04):103.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.019]
[5]王志波,王继柱.基于光纤光栅传感技术和卷积神经网络的铁路信号调节方法研究[J].工业仪表与自动化装置,2023,(01):91.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.018]
WANG Zhibo,WANG Jizhu.Research on railway signal regulation based on fiber grating sensing technology and convolutional neural network[J].Industrial Instrumentation & Automation,2023,(04):91.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.018]
[6]徐晓强,丁 峰,毕淑敏.基于高速通信的港口设备远程检测与控制技术研究[J].工业仪表与自动化装置,2024,(05):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]
XU Xiaoqiang,DING Feng,BI Shumin.Design of remote detection and control technology for port equipment based on high-speed mobile communication[J].Industrial Instrumentation & Automation,2024,(04):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]