|本期目录/Table of Contents|

[1]徐 洁,张 锐,汪志锋.改进蚁群算法在自动导引车路径规划中的应用[J].工业仪表与自动化装置,2023,(03):88-92.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
 XU Jie,ZHANG Rui,WANG Zhifeng.Application of improved ant colony algorithm in AGV path planning[J].Industrial Instrumentation & Automation,2023,(03):88-92.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
点击复制

改进蚁群算法在自动导引车路径规划中的应用

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年03期
页码:
88-92
栏目:
出版日期:
2023-06-15

文章信息/Info

Title:
Application of improved ant colony algorithm in AGV path planning
文章编号:
1000-0682(2023)02-0088-05
作者:
徐 洁张 锐汪志锋
上海第二工业大学 智能制造与控制工程学院,上海 200120
Author(s):
XU JieZHANG RuiWANG Zhifeng
School of Intelligent Manufacturing and Control Engineering,Shanghai Polytechnic University,Shanghai 200120, China
关键词:
路径规划蚁群算法栅格地图自动导引车(AGV)
Keywords:
path planningant algorithmgrid mapautomated guided vehi(AGV)
分类号:
TP242
DOI:
10.19950/j.cnki.cn61-1121/th.2023.03.018
文献标志码:
A
摘要:
传统蚁群算法求解自动导引车(Automated Guided Vehicle,AGV)路径规划时生成的最优路径弯曲次数多,累积弯曲角度大,造成路径轨迹整体不平滑;算法解算的路径规划结果容易陷入局部最优;处理死锁状态时路径规划方案多样性减少,导致出现寻优结果失真。针对上述情况,该文提出了将蚁群算法与A*算法相结合的优化模型,通过引入弯曲抑制算子以平滑路径;通过比对限制路径信息素,避免陷入局部最优;利用缩回机制应对凹陷障碍时容易出现的死锁情况,避免陷入死锁状态的蚂蚁在循环迭代中死亡。仿真实验结果表明,改进后的蚁群算法在收敛速度、最短路径长度以及路径轨迹平滑度上都优于传统蚁群算法。
Abstract:
When solving AGV path planning by traditional ant colony algorithm,the optimal path has many bending times and large cumulative bending angle,which results in the overall unsmoothness of the path trajectory.The path planning results solved by the algorithm tend to fall into local optimality;When dealing with deadlock state,the diversity of path planning sch-eme is reduced,resulting in the distortion of optimization results.In view of the above situation,this paper proposes an optimization model combining ant colony algorithm and A* algorithm. The bending suppression operator is introduced to smooth the path.By limiting the path phero-mone, local optimum is avoided. The retracting mechanism is used to deal with the deadlock situation which is easy to occur in the depression obstacle,so that the ants trapped in the dea-dlock state will not die in the cyclic iteration.The simulation results show that the improved ant colony algorithm is superior to the traditional ant colony algorithm in convergence speed, shortest path length and path smoothness.

参考文献/References:

[1] 康玉祥,姜春英,秦运海,等.基于改进PSO算法的机器人路径规划及实验[J].机器人,2020,42(01):71-78.

[2] 倪郁东,李媛媛,沈吟东,等.基于改进人工蜂群算法的移动机器人路径规划研究[J].合肥工业大学学报(自然科学版),2019,42(11):1569-1575.
[3] Kayalvizhi M, Ramamoorthy S. Optimized Path Planning Strategy to Enhance Security under Swarm of Unmanned Aerial Vehicles[J]. Drones, 2022,6(11).
[4] 张松灿,普杰信,司彦娜,等.蚁群算法在移动机器人路径规划中的应用综述[J].计算机工程与应用,2020,56(08): 10-19.
[5] 张毅,权浩,文家富.基于独狼蚁群混合算法的移动机器人路径规划[J].华中科技大学学报(自然科学版),2020, 48(01):127-132.
[6] 孙纯哲,林巨广,楼赣菲,等.凹形障碍全局路径规划的双蚁群完全交叉算法[J].农业机械学报,2008(07):149-153.
[7] 徐玉琼, 娄柯, 李志锟. 基于变步长蚁群算法的移动机器人路径规划[J]. 智能系统学报, 2021,16(02):330-337.
[8] Du Xuan,Xian-Zhe Y,Xing-Yu Y.Scenario modeling and operation path planning of autonomous driving tower cranes[J].Journal of Physics:Conference Series,2022, 2365(1).
[9] 张军明,张德祥,王硕.基于优化蚁群算法的机器人路径规划[J].自动化技术与应用,2016,35(11):6-10.
[10] 封声飞,雷琦,吴文烈,等.自适应蚁群算法的移动机器人路径规划[J].计算机工程与应用,2019,55(17):35-43.
[11] 魏彤,龙琛.基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报,2020,46(04):703-711.
[12]胡治锋,陈冬方,李庆奎,等.基于模拟退火蚁群算法的拣货路径规划[J].电子设计工程,2021,29(24):80-83.
[13]彭勇,赵子翔,肖云鹏.基于数据驱动的货车地铁协同配送路径优化[J].电子设计工程,2023,31(4):143-148.

相似文献/References:

[1]田淑梅,高希军,张喜海.基于农田复杂区域的WSN最优移动路径获取策略[J].工业仪表与自动化装置,2015,(02):127.
 TIAN Shumei,GAO Xijun,ZHANG Xihai.Optional moving path acquisition strategy based on farm complex region for WSN[J].Industrial Instrumentation & Automation,2015,(03):127.
[2]顾平灿,徐月同.基于QPSO的双机器人同步焊接路径规划研究[J].工业仪表与自动化装置,2015,(05):75.
 GU Pingcan,XU Yuetong.Research on path planning of synchronous welding of dual robot based on QPSO[J].Industrial Instrumentation & Automation,2015,(03):75.
[3]辛耀东,安世奇.凝固浴系统智能控制参数调整策略研究[J].工业仪表与自动化装置,2017,(01):71.
 XIN Yaodong,AN Shiqi.Research on Parameter Adjustment Strategy of Intelligent Control in Coagulation Bath System[J].Industrial Instrumentation & Automation,2017,(03):71.
[4]汤敏兰,沈晓明.基于蚁群算法的护理实习排班多约束问题研究[J].工业仪表与自动化装置,2018,(03):119.[doi:1000-0682(2018)03-0000-00]
 TANG Minlan,SHEN Xiaomin.Multi-constrained problem of nursing interns scheduling based on ant colony algorithm[J].Industrial Instrumentation & Automation,2018,(03):119.[doi:1000-0682(2018)03-0000-00]
[5]李巍巍,张海彪,王光辉,等.基于蚁群算法的倒立摆系统PID控制器设计[J].工业仪表与自动化装置,2018,(03):55.[doi:1000-0682(2018)03-0000-00]
 LI Weiwei,ZHANG Haibiao,WANG Guanghui,et al.Design of inverted pendulum PID controller based on ant colony algorithm[J].Industrial Instrumentation & Automation,2018,(03):55.[doi:1000-0682(2018)03-0000-00]
[6]赵艳东,张申申.基于改进蚁群算法的智能交通路径规划[J].工业仪表与自动化装置,2019,(02):30.[doi:1000-0682(2019)02-0000-00]
 ZHAO Yandong,ZHANG Shenshen.Intelligent transportation system path planning based on improved ant colony algorithm[J].Industrial Instrumentation & Automation,2019,(03):30.[doi:1000-0682(2019)02-0000-00]
[7]马学成.机床上下料设备控制系统设计及应用[J].工业仪表与自动化装置,2019,(03):81.[doi:1000-0682(2019)03-0000-00]
 MA Xuecheng.Design and application of control system for machine tool[J].Industrial Instrumentation & Automation,2019,(03):81.[doi:1000-0682(2019)03-0000-00]
[8]孟祥忠,刘 健,李 鹏.多AGV定位和路径规划方法研究[J].工业仪表与自动化装置,2019,(05):7.[doi:1000-0682(2019)05-0000-00]
 MENG Xiangzhong,LIU Jian,LI Peng.Research on multi-AGV location and path planning method[J].Industrial Instrumentation & Automation,2019,(03):7.[doi:1000-0682(2019)05-0000-00]
[9]唐兴贵,和文云,马志艳,等.基于S7-1200PLC和时域分析的工业机器人移动轨迹最优化规划方法[J].工业仪表与自动化装置,2022,(02):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
 TANG Xinggui,HE Wenyun,MA Zhiyan,et al.Optimal trajectory planning method of industrial robot based on s7-1200plc and time domain analysis[J].Industrial Instrumentation & Automation,2022,(03):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
[10]王建荣,陈 斌,陈 柯.基于蚁群算法的电梯群控系统研究[J].工业仪表与自动化装置,2022,(04):127.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.026]
 WANG Jianrong,CHEN bin,CHEN Ke.Research on elevator group control system based on ant colony algorithm[J].Industrial Instrumentation & Automation,2022,(03):127.[doi:10.19950/j.cnki.cn61-1121/th.2022.04.026]
[11]王俊彭,等.基于蚁群算法的人员疏散机器人路径规划方法[J].工业仪表与自动化装置,2023,(04):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]
 WANG Junpeng,,et al.Path planning method of personnel evacuation robot based on ant colony algorithm[J].Industrial Instrumentation & Automation,2023,(03):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]

备注/Memo

备注/Memo:
收稿日期:2023-01-06?div>
?一作者:
徐洁(1979—),女,上海人,硕士,讲师,研究方向为工业过程控制、过程监控与故障诊断。
更新日期/Last Update: 1900-01-01