|本期目录/Table of Contents|

[1]陆祎慧,程丽娟,方成刚,等.基于被动柔顺装置的改进PID控制方法[J].工业仪表与自动化装置,2023,(06):114-120.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.020]
 LU Yihui,CHENG Lijuan,FANG Chenggang,et al.Improved PID control method based on passive compliance device[J].Industrial Instrumentation & Automation,2023,(06):114-120.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.020]
点击复制

基于被动柔顺装置的改进PID控制方法

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年06期
页码:
114-120
栏目:
出版日期:
2023-12-15

文章信息/Info

Title:
Improved PID control method based on passive compliance device
文章编号:
1000-0682(2023)06-0114-00
作者:
陆祎慧1程丽娟2方成刚1陈宜涛1
1.南京工业大学机 械与动力工程学院,南京 211816;
2.江苏易蝶软件科技有限公司,江苏 镇江 212000
Author(s):
LU YihuiCHENG LijuanFANG ChenggangCHEN Yitao
1.School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China;
2.Jiangsu Easy Software Technology Company Limited, Jiangsu Zhenjiang 212000,China
关键词:
PID控制被动柔顺机器人铣削力波动
Keywords:
PID controlpassive compliancerobot millingforce fluctuation
分类号:
TP273
DOI:
DOI:10.19950/j.cnki.cn61-1121/th.2023.06.020
文献标志码:
B
摘要:
为了解决机器人铣削过程中存在力波动的问题,设计了一种被动柔顺装置并提出了一种基于被动柔顺装置的改进PID控制方法。柔顺装置安装于机器人末端,通过仿形轮、导轨和滑块的相对运动来达到沿着表面铣削的效果。改进的PID控制方法在参考信号之后引入二阶设定点滤波器,并设置合理的参数,首先在MATLAB/Simulink环境搭建模型,然后通过对比仿真实验证明该方法可以减少超调量的同时提高响应速度,并减少系统误差。随后,在Adams软件导入模型进行仿真实验,初步证明了该方法可以减少接触力的波动。同时,铣削实验进一步证明了该方法可以在铣削不同位置的表面的情况下均可减少仿形轮压力Fz的波动,压力极差减少0.5 N~0.6 N,方差减少15%~20%,并且铣削后的工件表面质量较好,证明了提出的方法的可行性。
Abstract:
In order to address the issue of force fluctuation in robotic milling processes, a passive compliance device is designed, and an improved PID control method based on the passive compliance device is proposed. The compliance device is installed at the end effector of the robot and achieves milling along the surface through the relative motion of a contour wheel, guide rail, and slider. The improved PID control method introduces a second-order set point filter after the reference signal, sets reasonable parameters, builds a model in MATLAB/Simulink environment, and then proves through comparative simulation experiments that this method can reduce the overshoot, improve the response speed, and reduce the system error. Then, simulation experiments are carried out in Adams, and it is preliminarily proved that this method can reduce the fluctuation of contact force. At the same time, the milling experiment proves that the method can reduce the fluctuation of the pressure Fz of the contour wheel under the condition of milling the surface at different positions, the pressure range is reduced by 0.5~0.6N, the variance is reduced by 15%~20%, and the surface quality of the workpiece after milling is better, which proves the feasibility of the proposed method.

参考文献/References:

[1] 王青, 王宇璐. 工业机器人应用对制造业高质量发展的影响研究[J]. 工业技术经济, 2023, 42(2): 115-124.

[2] 王坤东, 颜国正, 鄢波. 基于被动柔顺性的机器人位置/力控制[J]. 中国机械工程, 2006(7): 661-665.
[3] 黄婷, 孙立宁, 王振华, 等. 基于被动柔顺的机器人抛磨力/位混合控制方法[J]. 机器人, 2017, 39(6): 776-785.
[4] 高名飏, 田凤杰. 基于主被动柔顺的机器人磨抛叶片平稳性分析[J]. 一重技术, 2022 (6): 64-68.
[5] CAO X, WU W. Research on impact resistance and active–passive compliance control of rope-driven joint unit[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(9): 1-21.?div>[6] WANG Z, ZOU L, DUAN L, et al. Study on passive compliance control in robotic belt grinding of nickel-based superalloy blade[J]. Journal of Manufacturing Processes, 2021, 68: 168-179.
[7] 柯贤锋, 王军政, 何玉东, 等. 基于力反馈的液压足式机器人主/被动柔顺性控制[J]. 机械工程学报, 2017, 53(1): 13-20.
[8] 张义泽. 面向机器人砂带磨抛的被动柔顺技术研究[D]. 武汉:华中科技大学, 2020.
[9] TOMMASINO D, BOTTIN M, CIPRIANI G, et al. Development and Validation of an End-Effector for Mitigation of Collisions[J]. Journal of Mechanical Design, 2022, 144(4): 043301.
[10] ZHANG Z, CHEN G, FAN W, et al. A Stiffness Variable Passive Compliance Device with Reconfigurable Elastic Inner Skeleton and Origami Shell[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 1-13.
[11] DAS D, CHAKRABORTY S. A Modified PID Control for Higher Order References and Disturbances[C]//IEEE 4th International Conference on Computing and Communication Systems (I3CS), India: IEEE, 2023: No.23200365.
[12] MEENA R, PAL V C, CHAKRABORTY S. A Modified PID control for tracking and rejection of Ramp-type signals[C]//IEEE 4th International Conference on Computing and Communication Systems (I3CS), India: IEEE, 2023: No.23200367.
[13] 孙铭. 基于MATLAB和ADAMS的机械臂的轨迹规划及协调控制研究[D].北京:北京化工大学,2015.
[14] 李瑞芬, 曹有为. 塑料的机械加工[M]. 北京:化学工业出版社,2014: 105-142.
[15] 段春争,李朋欣.刀具材料对CFRP铣削力的影响[J].组合机床与自动化加工技术,2018(02):116-118.

相似文献/References:

[1]邹益民.基于SIMULINK-S函数的联合站脱水单神经元PID仿真[J].工业仪表与自动化装置,2014,(05):29.
 ZOU Yimin.Simulation of single neuron PID control for the union station crude oil dehydration process based on SIMULINK-S functions[J].Industrial Instrumentation & Automation,2014,(06):29.
[2]张亚明,高晓丁,刘亚亮,等.基于LabVIEW技术的城市深井供水网水位控制系统设计[J].工业仪表与自动化装置,2015,(03):86.
 ZHANG Yaming,GAO Xiaoding,LIU Yaliang,et al.The design of urban water supply network in deep water level control system based on LabVIEW Technology[J].Industrial Instrumentation & Automation,2015,(06):86.
[3]陈宏希,邹益民.基于OPC的MATLAB与S7-200 PLC实时通信在过程控制实验装置中应用[J].工业仪表与自动化装置,2015,(05):55.
 CHEN Hongxi,ZOU Yimin.Research on application of real-time communication of MATLAB with S7-200 PLC in process control experimental device based on OPC[J].Industrial Instrumentation & Automation,2015,(06):55.
[4]尹志豪,何洪伟,宋 维,等.SBR法反应池溶解氧(DO)的预测控制仿真研究[J].工业仪表与自动化装置,2015,(06):93.
 YIN Zhihao,HE Hongwei,SONG Wei,et al.Study on predictive control simulation of dissolved oxygen(DO)in SBR reaction pool computer engineering and applications[J].Industrial Instrumentation & Automation,2015,(06):93.
[5]牛宏侠a,侯 涛b.基于超声波传感器的液位控制实验研究[J].工业仪表与自动化装置,2016,(04):71.
 NIU Hongxiaa,HOU Taob.Experiment study of liquid level control based on ultrasonic sensor[J].Industrial Instrumentation & Automation,2016,(06):71.
[6]邵 威,刘犇成.Mamdani模糊算法在S7-300上的应用及仿真[J].工业仪表与自动化装置,2016,(05):36.
 SHAO Wei,DAI Shigang,LIU Bencheng.Application and simulation of Mamdani fuzzy algorithm on S7-300[J].Industrial Instrumentation & Automation,2016,(06):36.
[7]党存禄,杜小波.粒子群优化变论域模糊PID控制在风电机组变桨距中的应用[J].工业仪表与自动化装置,2017,(05):97.
 DANG Cunlu,DU Xiaobo.Application of variable universe fuzzy PID control optimized by particle swarm in variable pitch of wind turbine[J].Industrial Instrumentation & Automation,2017,(06):97.
[8]路 颜,程光威,张 媛.不平衡和非线性负载下的逆变器控制技术研究[J].工业仪表与自动化装置,2018,(05):37.[doi:1000-0682(2018)05-0000-00]
 LU Yan,GHENG Guangwei,ZHANG Yuan.Research on control technology of inverter with unbalanced and nonlinear loads[J].Industrial Instrumentation & Automation,2018,(06):37.[doi:1000-0682(2018)05-0000-00]
[9]赵国新,吕文洋,刘昌龙,等.液压伺服系统建模与模糊自适应PID控制研究[J].工业仪表与自动化装置,2019,(02):3.[doi:1000-0682(2019)02-0000-00]
 ZHAO Guoxin,LV Wenyang,LIU Changlong,et al.Modeling and research on fuzzy adaptive PID control for hydraulic servo system[J].Industrial Instrumentation & Automation,2019,(06):3.[doi:1000-0682(2019)02-0000-00]
[10]闵 军,蒋文萍.自整定模糊PID算法在精密温控系统中的运用[J].工业仪表与自动化装置,2019,(04):35.[doi:1000-0682(2019)04-0000-00]
 MIN Jun,JIANG Wenping.Application of self-tuning fuzzy PID algorithm in precision temperature control system[J].Industrial Instrumentation & Automation,2019,(06):35.[doi:1000-0682(2019)04-0000-00]

备注/Memo

备注/Memo:
收稿日期:2023-08-08

基金项目:
扬州西融储能有限公司合作项目(高邮电池装配线)

第一作者:
陆祎慧(1998—),男,江苏常州人,南京工业大学硕士研究生,研究方向为工业信息与智能化。

通信作者:
方成刚(1974—),男,江苏大丰人,教授,硕士研究生导师,研究方向为智能制造。
更新日期/Last Update: 1900-01-01