|本期目录/Table of Contents|

[1]王怀志,高德欣.基于深度学习的矿井电力短期负荷预测方法[J].工业仪表与自动化装置,2024,(01):51-56.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.01.012]
 WANG Huaizhi,GAO Dexin.Mine power short-term load forecasting method based on deep learning[J].Industrial Instrumentation & Automation,2024,(01):51-56.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.01.012]
点击复制

基于深度学习的矿井电力短期负荷预测方法(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年01期
页码:
51-56
栏目:
出版日期:
2024-02-15

文章信息/Info

Title:
Mine power short-term load forecasting method based on deep learning
文章编号:
1000-0682(2024)01-0051-06
作者:
王怀志高德欣
(青岛科技大学 自动化与电子工程学院,山东 青岛 266061)
Author(s):
WANG HuaizhiGAO Dexin
(School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)
关键词:
深度学习短期负荷预测煤矿供电双向门控循环单元监控平台
Keywords:
deep learningshort-term load forecastingcoal mine power supply BiGRU monitoring platform
分类号:
TD602
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.01.012
文献标志码:
B
摘要:
短期电力负荷预测能准确评估出煤矿的整体电力负荷变化情况,保证煤矿供电系统的安全与可靠运行。由于煤矿电力负荷预测受多种因素影响,难以实现精确预测,文章针对此问题,基于深度学习理论,提出了一种卷积神经网络(CNN)和双向门控循环单元(BiGRU)相结合的矿井电力短期负荷预测方法,并用于煤矿的实际电力负荷预测中。首先,构建了煤矿电力负荷预测的混合学习模型;然后,给出了数据处理方法,设计了模型评判指标,搭建了仿真平台并进行了多种算法的分析与对比;最后,基于组态软件开发了电力监控与预测系统,并应用于煤矿实际监控中。经现场试验表明,设计的方法可以实现对矿井短期电力负荷的准确预测,为煤矿电力系统的安全运行提供准确的决策支撑。
Abstract:
Short-term power load forecasting can accurately evaluate the change of the whole power load in coal mine, and ensure the safe and reliable operation of the power supply system in coal mine. Due to the influence of many factors, it is difficult to achieve accurate prediction of coal mine electric load prediction. To solve this problem, this paper proposes a short-term mine electric load prediction method based on deep learning theory, which combines convolutional neural network (CNN) and bidirectional gated cycle unit (BiGRU), and applies it to the actual coal mine electric load prediction. Firstly, the hybrid learning model of coal mine power load forecasting is constructed. Then, the data processing method is given, the model evaluation index is designed, the simulation platform is built, and a variety of algorithms are analyzed and compared. Finally, based on the configuration software, the power monitoring and forecasting system is developed and applied to the actual monitoring of coal mine. The field test shows that the proposed method can accurately predict the short-term power load of the mine and provide accurate decision support for the safe operation of the coal mine power system.

参考文献/References:

[1]吴君.基于改进的灰色模型的煤矿电力短期负荷预测[J].测控技术,2018,37(09):26-28.

[2]郭傅傲,刘大明,张振中,等.基于特征相关分析修正的GPSO-LSTM短期负荷预测[J].电测与仪表,2021,58(06):39-48.
[3]王琨,高敬更,张勇红,等.基于LSTM神经网络的复合变量电动汽车充电负荷预测方法技术研究[J].工业仪表与自动化装置,2019(01):27-31.
[4]赵茂胜,段嘉琪,肖政杰.基于PSO-RBF的短期电力负荷预测模型[J].电子设计工程,2023,31(14):127-131.
[5]董维振,陈燕,李媛媛.基于多元逐步回归的带钢性能预测模型[J].工业仪表与自动化装置,2022(02):107-111.
[6]王宝财.基于温度近因效应的多元线性回归电力负荷预测[J].水电能源科学,2018,36(10):201-205.
[7]宋娟,廖尚泰.基于BP神经网络与多元线性回归的短期燃气负荷预测[J].宁夏工程技术,2019,18(04):343-346.[
8]戴礼灿,刘欣,张海瀛,等.基于卡尔曼滤波算法展开的飞行目标轨迹预测[J].系统工程与电子技术,2023,45(06):1814-1820.
[9]李萍.基于BP和多项式拟合模型在电力系统短期负荷的研究[J].工业仪表与自动化装置,2018(05):135-138.
[10]徐晴,周超,赵双双,等.基于机器学习的短期电力负荷预测方法研究[J].电测与仪表,2019,56(23):70-75.
[11]李大中,李颖宇.基于深度学习与误差修正的超短期风电功率预测[J].太阳能学报,2021,42(12):200-205.
[12]查雯婷,杨帆,陈波,等.基于CNN的区域风功率预测方法[J].计算机仿真,2021,38(05):318-323.
[13]冯裕祺,李辉,李利娟,等.基于CNN-GRU的光伏电站电压轨迹预测[J].中国电力,2022,55(07):163-171.
[14]曾囿钧,肖先勇,徐方维.基于小波变换与BiGRU-NN模型的短期负荷预测方法[J].电测与仪表,2023,60(06):103-109.
[15]HU Y , ZHANG Q .A hybrid CNN-LSTM machine learning model for rock mechanical parameters evaluation[J].Geoenergy Science and Engineering, 2023:225.
[16]WANG Delu,GAN Jun,MAO Jinqi,et al. Forecasting power demand in China with a CNN-LSTM model including multimodal information[J]. Energy,2023,263(PE).
[17]范士雄,刘幸蔚,於益军,等.基于多源数据和模型融合的超短期母线负荷预测方法[J].电网技术,2021,45(01):243-250.
[18]HOU Jingwei,WANG Yanjuan,ZHOU Ji,et al. Prediction of hourly air temperature based on CNN–LSTM[J]. Geomatics, Natural Hazards and Risk,2022,13(1).
[19]乔石,王磊,张鹏超,等.基于时间模式注意力机制的GRU短期负荷预测[J/OL].电力系统及其自动化学报:1-9[2023-06-05].
[20]董雪,赵宏伟,赵生校,等.基于二次分解和多目标优化的超短期海上风电功率预测[J].高电压技术,2022,48(08):3260-3270.
[21]朱凌建,荀子涵,王裕鑫,等.基于CNN-Bi LSTM的短期电力负荷预测[J].电网技术,2021,45(11):4532-4539.
[22]梁宏涛,王莹,刘红菊,等.基于注意力机制的CNN-BiGRU短期光伏发电功率预测[J].计算机测量与控制,2022,30(06):259-265.
[23]刘倩倩,刘钰山,温烨婷,等.基于PCC-LSTM模型的短期负荷预测方法[J].北京航空航天大学学报,2022,48(12):2529-2536.

相似文献/References:

[1]杨 帅,张有芬,李玉惠,等.基于深度卷积神经网络的车标分类[J].工业仪表与自动化装置,2017,(05):75.
 YANG Shuai,ZHANG Youfen,LI Yuhui,et al.Vehicle classification based on deep convolutional neural network[J].Industrial Instrumentation & Automation,2017,(01):75.
[2]徐先峰,黄刘洋,龚 美.基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测[J].工业仪表与自动化装置,2020,(01):13.
 XU Xianfeng,HUANG Liuyang,GONG Mei.Short-term traffic flow prediction based on combined model of convolutional neural network and bidirectional long-term memory network[J].Industrial Instrumentation & Automation,2020,(01):13.
[3]张晓华,马 煜,杨晨辉,等.基于卷积神经网络的设备安装位置智能识别方法[J].工业仪表与自动化装置,2021,(01):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
 ZHANG Xiaohua,MA yu,YANG Chenhui,et al.Intelligent identification method of equipment installation position based on convolution neural network[J].Industrial Instrumentation & Automation,2021,(01):13.[doi:10.3969/j.issn.1000-0682.2021.01.003]
[4]苏 杨,卢 翔,李 琨,等.基于轻量深度学习网络的机房人物检测研究[J].工业仪表与自动化装置,2021,(01):100.[doi:10.3969/j.issn.1000-0682.2021.01.024]
 SU Yang,LU Xiang,LI Kun,et al.Research on computer room human detection based on lightweight deep learning network[J].Industrial Instrumentation & Automation,2021,(01):100.[doi:10.3969/j.issn.1000-0682.2021.01.024]
[5]卢 翔,苏 杨,余 萱,等.基于深度学习的机房人物重识别研究[J].工业仪表与自动化装置,2021,(02):104.[doi:10.19950/j.cnki.cn61-1121/th.2021.02.024]
 LU Xiang,SU Yang,YU Xuan,et al.Research on computer room character recognition based on deep learning[J].Industrial Instrumentation & Automation,2021,(01):104.[doi:10.19950/j.cnki.cn61-1121/th.2021.02.024]
[6]倪四清,左光恒,张 俊.高速公路建设远程视频监控系统的设计与实现[J].工业仪表与自动化装置,2022,(02):76.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.016]
 NI Siqing,ZUO Guangheng,ZHANG Jun.Design and realization of remote video monitoring system for expressway construction[J].Industrial Instrumentation & Automation,2022,(01):76.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.016]
[7]何凌志,王玉珏,周月娥,等.基于改进的YOLOv5算法路面检测设计[J].工业仪表与自动化装置,2023,(04):93.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.017]
 HE Lingzhi,WANG Yujue,ZHOU Yuee,et al.Pavement detection design based on improved YOLOv5 algorithm[J].Industrial Instrumentation & Automation,2023,(01):93.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.017]
[8]骈璐璐,裴焕斗,张宇璇.多场景烟雾环境下改进的YOLOv5s烟雾检测算法[J].工业仪表与自动化装置,2024,(02):101.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.018]
 PIAN Lulu,PEI Huandou,ZHANG Yuxuan.Improved YOLOv5s smoke detection algorithm in multi-scenario smoke environment[J].Industrial Instrumentation & Automation,2024,(01):101.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.018]
[9]徐晓强,丁 峰,毕淑敏.基于高速通信的港口设备远程检测与控制技术研究[J].工业仪表与自动化装置,2024,(05):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]
 XU Xiaoqiang,DING Feng,BI Shumin.Design of remote detection and control technology for port equipment based on high-speed mobile communication[J].Industrial Instrumentation & Automation,2024,(01):83.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.05.016]

备注/Memo

备注/Memo:
收稿日期:2023-09-06基金项目:山东省自然科学基金资助项目(ZR2022ME194);兖矿能源科技项目(kj20210001)第一作者:王怀志(1999—),男,黑龙江哈尔滨人,硕士研究生,研究方向为人工智能、优化控制?E-mail:1281765408@qq.com通信作者:高德欣(1978—),男,山东青岛人,博士,教授,研究方向为人工智能?优化控制?电动汽车充电技术等?
更新日期/Last Update: 1900-01-01