|本期目录/Table of Contents|

[1]陈宜涛,方成刚,张文东,等.基于机器视觉的工业零件智能分拣系统设计[J].工业仪表与自动化装置,2024,(06):24-29.[doi:10.19950/j.cnki.CN61-1121/TH.2024.06.005]
 CHEN Yitao,FANG Chenggang,ZHANG Wendong,et al.Design of intelligent sorting system for industrial parts based on machine vision[J].Industrial Instrumentation & Automation,2024,(06):24-29.[doi:10.19950/j.cnki.CN61-1121/TH.2024.06.005]
点击复制

基于机器视觉的工业零件智能分拣系统设计(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年06期
页码:
24-29
栏目:
出版日期:
2024-12-15

文章信息/Info

Title:
Design of intelligent sorting system for industrial parts based on machine vision
文章编号:
1000-0682(2024)06-0024-06
作者:
陈宜涛方成刚张文东
(南京工业大学 机械与动力工程学院, 江苏 南京 211816)
Author(s):
CHEN Yitao FANG ChenggangZHANG Wendong et al
(School of Mechanical and Power Engineering,Nanjing Tech University,Jiangsu Nanjing 211816, China )
关键词:
机器视觉工业机器人物体分拣标定识别抓取
Keywords:
machine visionindustrial robotobject sortingcalibrationrecognition and grasping
分类号:
TP242
DOI:
10.19950/j.cnki.CN61-1121/TH.2024.06.005
文献标志码:
A
摘要:
针对工业生产中机器视觉与机器人结合广泛的应用需求,该文设计了一种智能分拣系 统,该系统基于机器视觉技术,能够识别并定位传送带上运动的目标物体。该系统通过对相机和坐 标系的标定来保证机器人识别抓取的定位精度,利用 YOLOv5 检测算法识别传送带上的目标物体, 并采用形心坐标法来确定目标物体的中心像素坐标,然后运用仿射变换方法来实现对目标物体的 精确定位。实验结果表明,本智能分拣系统在工业分拣零件的过程中特定目标工件识别的准确率 可以达到 98% 以上,而机器人定位抓取目标工件的精度误差保持在 1 mm 以 内。 因此设计的智能 分拣系统能够对工业生产中的零件进行高精度的识别定位及抓取,该系统能够有效地满足工业生 产中对于零件自动分拣的精确要求,显示出其在工业自动化领域的广泛应用潜力。
Abstract:
This article presents the design of an intelligent sorting system that integrates machine vi-sion with robotics to meet the extensive application demands in industrial production. Specifically, thissystem is engineered to identify and locate moving target objects on a conveyor belt through machine vi-sion. It ensures precision in the robot′s identification and grasping positioning by calibrating the camera and coordinate systems. The system employs the YOLOv5 detection algorithm to recognize target objectson the conveyor belt and utilizes the centroid method to determine the central pixel coordinates of the ob-jects. Subsequently, an affine transformation approach is applied for the precise localization of the target objects. Experimental outcomes indicate that during the industrial part -sorting process, this intelligent sorting system achieves an accuracy rate of over 98% in identifying specific target workpieces. Moreover,the positioning error remains within less than 1 mm when the robot performs the task of grasping theseworkpieces. Consequently, the designed intelligent sorting system can carry out high -precision identifi- cation, positioning, and grasping of parts in industrial production. The system is capable of effectivelymeeting the precise requirements for automatic part sorting in industrial production, demonstrating itsbroad potential applications in the field of industrial automation.

参考文献/References:

[1] 高茂源, 王好臣, 赵锦泽, 等. 双目视觉引导机器人码垛定位技术的研究[J]. 计算机测量与控制, 2020, 28(1): 219-222.

[2] 张大为, 沈勇. 基于机器视觉的机器人自动上料系统设计[J]. 单片机与嵌入式系统应用, 2021, 21(03): 55-58.
[3] 张冬梅, 武杰, 李丕丁. 基于机器视觉的运动目标检测算法综述[J]. 智能计算机与应用, 2020, 10(03): 192-195.
[4] 王校峰, 王建文, 曹鹏勇, 等. 机器视觉主导的机械臂动态抓取策略研究[J]. 机床与液压, 2022, 50(17): 38-42.
[5] 景卓, 陈超波, 曹凯, 等. 基于机器视觉的物体识别分拣装置研究[J]. 计算机与数字工程, 2019, 47(3): 657-661.
[6] 王杰, 马行, 穆春阳. 基于深度可分离卷积的大型铸件焊缝检测方法[J]. 传感器与微系统, 2023, 42(5): 161-164.
[7] 王彤, 李琦. 基于残差网络与特征融合的改进YOLO目标检测算法研究[J]. 河北工业大学学报, 2023, 52(1): 41-49.
[8] 孙廨尧, 李秀茹, 王松林. 基于改进YOLOv5的学生面部表情识别[J]. 齐鲁工业大学学报, 2023, 37(1): 28-35.
[9] 刘磊, 赵栓峰, 郭位. 一种YOLO识别与Mean shift跟踪的车流量统计方法[J]. 制造业自动化, 2020, 42(2): 16-20.
[10] CHEN K, LI H, LI C. An automatic defect detection system for petrochemical pipeline based on cycle-GAN and YOLOv5[J]. Sensors, 2022, 22(20): 7907.
[11] ROY A M, BOSE R, BHADURI J. A fast accurate fine grain object detection model based on YOLOv4 deep neural network[J]. Neural Computing and Applications, 2022, 34(5): 3895-3921.
[12] GAO P, LEE K. Dynamic beehive detection and tracking system based on YOLOv5 and unmanned aerial vehicle[J]. Journal of Biosystems Engineering, 2022, 47(4): 510-520.
[13] KROTSCH J, PIEPENBREIER B. Radial forces in external rotor permanent magnet synchronous motors with non-overlapping windings[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2267-2276.
[14] HSIEH Y H, LEE F C. Modeling resonant converters in a rotating coordinate[J]. 2017 IEEE Energy Conversion Congress and Exposition, 2017: 237-243.
[15] 高智伟, 谭晓东, 刘客. 基于双目视觉的物体识别定位与抓取[J]. 科学技术与工程, 2020, 20(20): 8285-8291.

相似文献/References:

[1]李志明.基于机器视觉的鲜枣群体大小检测算法[J].工业仪表与自动化装置,2016,(05):29.
 LI Zhiming.Fresh jujubes group size detection algorithm based on Machine Vision[J].Industrial Instrumentation & Automation,2016,(06):29.
[2]任晓芳,林 娟.六自由度机械手抓取系统的OPC通信技术研究[J].工业仪表与自动化装置,2017,(02):109.
 REN Xiaofang,LIN Juan.Research on OPC technology with fetching system of robot with six DOF[J].Industrial Instrumentation & Automation,2017,(06):109.
[3]熊磊翔,诸 洪,余海勇,等.基于视觉的机器人抓取技术的研究[J].工业仪表与自动化装置,2017,(05):41.
 XIONG Leixiang,ZHU Hong,YU Haiyong,et al.Research on industrial robots scraping technologies based on vision[J].Industrial Instrumentation & Automation,2017,(06):41.
[4]陶唐飞a,b,贺 华a,等.基于数字图像处理的活塞位姿检测技术研究[J].工业仪表与自动化装置,2018,(05):3.[doi:1000-0682(2018)05-0000-00]
 TAO Tangfeia,b,HE Huaa,et al.Study on the detection technology of piston position and orientation based on digital image processing[J].Industrial Instrumentation & Automation,2018,(06):3.[doi:1000-0682(2018)05-0000-00]
[5]魏元焜,吴丹阳.基于NI myRIO的机器视觉搬运车设计[J].工业仪表与自动化装置,2019,(05):53.[doi:1000-0682(2019)05-0000-00]
 WEI Yuankun,WU Danyang.Design of machine vision carrier vehicle based on NI myRIO[J].Industrial Instrumentation & Automation,2019,(06):53.[doi:1000-0682(2019)05-0000-00]
[6]黄金梭,沈正华,鲁文杰.基于机器视觉的微动开关正反面外观检测与分拣系统的设计与实现[J].工业仪表与自动化装置,2020,(03):121.[doi:1000-0682(2020)03-0000-00]
 HUANG Jinsuo,SHEN Zhenghua,LU Wenjie.Design and implementation of double face appearance inspection and sorting system of micro-switch based on machine vision[J].Industrial Instrumentation & Automation,2020,(06):121.[doi:1000-0682(2020)03-0000-00]
[7]张 恒,何文雪.基于机器视觉的坚果尺寸检测系统设计[J].工业仪表与自动化装置,2020,(06):52.[doi:1000-0682(2020)06-0000-00]
 ZHANG Heng,HE Wenxue.Design of nut size detection system based on machine vision[J].Industrial Instrumentation & Automation,2020,(06):52.[doi:1000-0682(2020)06-0000-00]
[8]袁锦涛a,b,刘 军a,等.基于粒子群算法的工业机器人多目标最优轨迹规划[J].工业仪表与自动化装置,2021,(05):73.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.016]
 YUAN Jintaoa,b,LIU Juna,et al.Multi objective optimal trajectory planning of industrial robot based on particle swarm optimization[J].Industrial Instrumentation & Automation,2021,(06):73.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.016]
[9]董 杰,刘文峰,乔法起,等.基于SVM的井下水仓淤泥识别系统的研究[J].工业仪表与自动化装置,2021,(05):112.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.024]
 DONG Jie,LIU Wenfeng,QIAO Faqi,et al.Research on sludge recognition system of underground water silo based on SVM[J].Industrial Instrumentation & Automation,2021,(06):112.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.024]
[10]杨 利,谢永超*.基于PLC和机器视觉的工件自动分拣系统设计[J].工业仪表与自动化装置,2022,(01):48.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.010]
 YANG Li,XIE Yongchao*.Design of automatic sorting system for workpieces based on PLC and machine machine vision[J].Industrial Instrumentation & Automation,2022,(06):48.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.010]
[11]陈 杰,王宏彦.基于视觉的汽车轮毂打磨实训系统设计[J].工业仪表与自动化装置,2021,(01):36.[doi:10.3969/j.issn.1000-0682.2021.01.008]
 CHEN Jie,WANG Hongyan.Design of practical training system of wheel hub grinding based on vision[J].Industrial Instrumentation & Automation,2021,(06):36.[doi:10.3969/j.issn.1000-0682.2021.01.008]

备注/Memo

备注/Memo:
收稿日期:2024-04-22第一作者:陈宜涛(1997—),男,安徽临泉人,硕士,研究方向为机器视觉与工业机器人综合应用?通信作者:方成刚(1974—),男,江苏大丰人,教授,硕士研究生导师,研究方向为智能制造?
更新日期/Last Update: 1900-01-01